Nonlinear Mechanics and Chaos

Dr. Jen-Hao Yeh

Prof. Anlage

This is a brief introduction to the ideas and concepts of nonlinear mechanics, and a discussion of various quantitative methods for analyzing such problems

We will focus on the driven damped pendulum (DDP)

$$\ddot{\phi} + \frac{b}{m}\dot{\phi} + \frac{g}{L}\sin\phi = \frac{F_{\rm o}}{mL}\cos\omega t.$$

Figure 12.1 The three important forces on the driven damped pendulum are the resistive force with magnitude bv, the weight mg, and the driving force F(t). (There is also a reaction force from the pivot at the top, but this contributes nothing to the torque.)

Linear	Nonlinear	
easy	hard	
special	general	
analytical	numerical	
Superposition principle		
	Chaos	

$$m\ddot{x} = -kx$$
$$mL^{2}\ddot{\varphi} = -mgL\sin\varphi$$
$$m\ddot{\vec{r}} = -\frac{GMm}{r^{2}}\hat{r}$$

Driven, Damped Pendulum (DDP)

$$mL^2\ddot{\phi} = -mg\sin\phi - bL^2\dot{\phi} + LF(t)$$

Driving force: $F(t) = F_0 \cos(\omega t)$ Damping constant: $\beta = \frac{b}{2m}$ Natural frequency: $\omega_0 = \sqrt{\frac{g}{L}}$ Drive strength: $\gamma = \frac{F_0}{mg}$

$$\ddot{\phi} + 2\beta\dot{\phi} + \omega_0^2\sin(\phi) = \gamma\omega_0^2\cos(\omega t)$$

We expect something interesting to happen as $\gamma \rightarrow 1$, i.e. the driving force becomes comparable to the weight

A Route to Chaos

NDSolve in Mathematica

 $\begin{aligned} & \texttt{Fig12p2} = \texttt{NDSolve}[\{\phi''[t] + 2\beta\phi'[t] + \omega_0^2 \texttt{Sin}[\phi[t]] = \gamma \omega_0^2 \texttt{Cos}[\omega t], \phi[0] = 0, \phi'[0] = 0\}, \phi, \{t, 0, 6\}] \\ & \{\{\phi \rightarrow \texttt{InterpolatingFunction}[\{\{0., 6.\}\}, <>\}\} \end{aligned}$

 $\begin{aligned} & \text{Plot}[\text{Evaluate}[\phi[t] /. \text{Fig12p2}], \{t, 0, 6\}, \text{Ticks} \rightarrow \{\{1, 2, 3, 4, 5, 6\}, \{-0.3, 0.3\}\}, \text{PlotRange} \rightarrow \text{All}, \\ & \text{AxesStyle} \rightarrow \text{Thick}, \text{PlotStyle} \rightarrow \text{Thick}, \text{LabelStyle} \rightarrow \{\text{Bold}, \text{Medium}\}] \end{aligned}$

Driven, Damped Pendulum (DDP)

$$\ddot{\phi} + 2\beta\dot{\phi} + \omega_0^2\sin(\phi) = \gamma\omega_0^2\cos(\omega t)$$

For all following plots:

$$\omega = 2\pi$$

Period = $2\pi/\omega = 1$
 $\omega_0 = 1.5\omega$
 $\beta = \omega_0 / 4$
 $\phi(0) = \dot{\phi}(0) = 0$

Small Oscillations of the Driven, Damped Pendulum

 $\gamma << 1$ will give small oscillations

 $\ddot{\phi} + 2\beta\dot{\phi} + \omega_0^2\phi = \gamma\omega_0^2\cos(\omega t)$

Linear

After the initial transient dies out, the solution looks like

$$\phi(t) = A\cos(\omega t - \delta)$$
 Periodic "attractor"

Small Oscillations of the Driven, Damped Pendulum $\gamma \ll 1$ will give small oscillations

- 1) The motion approaches a unique periodic attractor independent of initial conditions
- 2) The motion is sinusoidal with the same frequency as the drive

$$\phi(t) = A\cos(\omega t - \delta)$$

Moderate Oscillations of the Driven, Damped Pendulum

 $\gamma < 1$ and the nonlinearity becomes significant...

$$\ddot{\phi} + 2\beta\dot{\phi} + \omega_0^2 \left(\phi - \frac{1}{6}\phi^3\right) \cong \gamma \omega_0^2 \cos(\omega t)$$

Try $\phi(t) = A\cos(\omega t - \delta)$

This solution gives from the ϕ^3 term: $\cos^3 x = \frac{1}{4}(\cos 3x + 3\cos x)$

Since there is no $\cos(3\omega t)$ on the RHS, it must be that ϕ, ϕ, ϕ all develop a $\cos(3\omega t)$ time dependence. Hence we expect:

$$\phi(t) = A\cos(\omega t - \delta) + B\cos[3(\omega t - \delta)]$$
$$B << A$$

We expect to see a <u>third harmonic</u> as the driving force grows

Harmonics

• Frequency = $n\omega$

Moderate Driving: The Nonlinearity Distorts the cos(ω t)

The motion is periodic, but ... The <u>third harmonic</u> distorts the simple $\phi(t) = A\cos(\omega t - \delta)$

Even Stronger Driving: Complicated Transients – then Periodic!

After a wild initial transient, the motion becomes periodic

After careful analysis of the long-term motion, it is found to be periodic with the same period as the driving force

Slightly Stronger Driving: Period Doubling

After a wilder initial transient, the motion becomes periodic, but period 2!

The long-term motion is TWICE the period of the driving force! A SUB-Harmonic has appeared

Slightly Stronger Driving: Period 3

The period-2 behavior still has a strong period-1 component Increase the driving force slightly and we have a very strong period-3 component

Multiple Attractors

The linear oscillator has a single attractor for a given set of initial conditions For the drive damped pendulum: Different initial conditions result in different long-term behavior (attractors)

Period Doubling Cascade

'Bifurcation Points' in the Period Doubling Cascade

Driven Damped Pendulum

 $\phi(0) = -\pi/2$ $\dot{\phi}(0) = 0$

The spacing between consecutive bifurcation points grows smaller at a steady rate:

$$(\gamma_{n+1} - \gamma_n) \approx \frac{1}{\delta} (\gamma_n - \gamma_{n-1})$$
 $``\approx' \rightarrow `=' \text{ as } n \rightarrow \infty$

 δ = 4.6692016 is called the Feigenbaum number

The limiting value as $n \to \infty$ is $\gamma_c = 1.0829$. Beyond that is ... chaos!

Period Doubling Cascade

Period doubling continues in a sequence of ever-closer values of γ

Such period-doubling cascades are seen in many nonlinear systems Their form is essentially the same in all systems – it is "universal"

Period infinity

www.shutterstock.com · 115808437

Chaos!

The pendulum is "trying" to oscillate at the driving frequency, but the motion remains erratic for all time

Chaos

- Nonperiodic
- Sensitivity to initial conditions

Sensitivity of the Motion to Initial Conditions

Start the motion of two identical pendulums with slightly different initial conditions Does their motion converge to the same attractor? Does it diverge quickly?

Two pendulums $\phi_1(t)$, $\phi_2(t)$ are given different initial conditions

Follow their evolution and calculate $\Delta \phi(t) = \phi_2(t) - \phi_1(t)$

For a <u>linear</u> oscillator $\phi(t) = A\cos(\omega t - \delta) + C_1 e^{r_1 t} + C_2 e^{r_2 t}$ Long-term attractor Transient behavior $r_{1,2} = -\beta \pm i\omega_1$ underdamping, $\omega_1 = \sqrt{\omega^2 - \beta^2}$

The initial conditions affect the transient behavior, the long-term attractor is the same

Hence $\Delta \phi(t) = De^{-\beta t} \cos(\omega_1 t - \delta_1)$

Thus the trajectories will converge after the transients die out

Convergence of Trajectories in Linear Motion

 $\Delta \phi(t) = D e^{-\beta t} \cos(\omega_1 t - \delta_1)$

Take the logarithm of $|\Delta \phi(t)|$ to magnify small differences. $\ln[|\Delta \phi(t)|] = \ln(D) - \beta t + \ln[|\cos(\omega_1 t - \delta_1)|]$

Plotting $\log_{10}[|\Delta \phi(t)|]$ vs. *t* should be a straight line of slope $-\beta$, plus some wiggles from the $\ln[|\cos(\omega_1 t - \delta_1)|]$ term

Note that $\log_{10}[x] = \log_{10}[e] \ln[x]$

Convergence of Trajectories in Linear Motion

The trajectories converge quickly for the small driving force (~ linear) case This shows that the linear oscillator is essentially <u>insensitive</u> to its initial conditions!

Convergence of Trajectories in Period-2 Motion

The trajectories converge more slowly, but still converge

Divergence of Trajectories in **Chaotic** Motion

Practically impossible to predict the motion

The Lyapunov Exponent

$$\left|\Delta\phi(t)\right| \sim Ke^{\lambda t}$$
 $K > 0$

 λ = Lyapunov exponent

 $\lambda < 0$: periodic motion in the long term $\lambda > 0$: chaotic motion

Linear	Nonlinear	
		Chaos
Drive period	Harmonics,	Nonperiodic,
	Subharmonics,	Extreme sensitivity
	Period-doubling	
$\lambda < 0$	$\lambda < 0$	$\lambda > 0$

What Happens if we Increase the Driving Force Further? Does the chaos become more intense?

 $\Delta \phi(0) = 0.001$ Radians

Period 3 motion re-appears!

With increasing γ the motion alternates between chaotic and periodic

What Happens if we Increase the Driving Force Further? Does the chaos re-appear?

 $\Delta \phi(0) = 0.001$ Radians

Chaotic motion re-appears! This is a kind of 'rolling' chaotic motion

Divergence of Two Nearby Initial Conditions for Rolling Chaotic Motion

Chaotic motion is always associated with extreme sensitivity to initial conditions

Periodic and chaotic motion occur in narrow intervals of γ

Bifurcation Diagram

Period Doubling Cascade

Period doubling continues in a sequence of ever-closer values of γ

Such period-doubling cascades are seen in many nonlinear systems Their form is essentially the same in all systems – it is "universal"

FIG. 1. Experimental apparatus for subharmonic generation.

Sub-harmonic frequency spectrum

FIG. 5. Power spectral density (dB) vs frequency for f = 98 kHz, dynamic range 70 dB, showing subharmonics to f/32. The components agree with prediction (dashed bars, Ref. 14) within 2 dB rms deviation, except for the peak at f/16.

Evidence for Universal Chaotic Behavior of a Driven Nonlinear Oscillator James Testa, José Pérez, and Carson Jeffries

Period Doubling Cascade

Period doubling continues in a sequence of ever-closer values of γ

Such period-doubling cascades are seen in many nonlinear systems Their form is essentially the same in all systems – it is "universal"

Figure 3.7. Period doubling in seizures and in thermoconvection. (A), intracranial recording from a patient suffering temporal lobe seizures. The left-hand side recordings show how the length of the period, marked by the rectangles, doubles during the seizure, while the right-hand side recording corresponds to a posterior time toward the end of the seizure where more complex aperiodic activity is apparent due to successive period doublings. (B), to illustrate how period doubling was defined in classic studies and the similarity with the intracerebral recording, doubling of the periods in a thermoconvection experiment is shown. The time series is the temperature of a fluid, note the subharmonic cascade as the control parameter of the system changes. The line segments indicate the duration of one period. Panel A is reprinted with permission from Perez Velazquez *et al.* (2003) and panel B from Bergé *et al.* (1984).

A period doubling cascade in convection of mercury in a small convection cell. The plots show the temperature at one fixed point in the cell as a function of time, for four successively larger temperature gradients as given by the parameter R/R_c

The Brain-behaviour Continuum: The Subtle Transition Between Sanity and Insanity By Jose Luis. Perez Velazquez Fig. 12.9, Taylor

Bifurcation Diagram

Used to visualize the behavior as a function of driving amplitude γ

- 1) Choose a value of γ
- 2) Solve for $\phi(t)$, and plot a <u>periodic sampling</u> of the function $\phi(t_0)$, $\phi(t_0+1)$, $\phi(t_0+2)$, $\phi(t_0+3)$, $\phi(t_0+4)$,... t₀ chosen at a time after the attractor behavior has been achieved
- 3) Move on to the next value of γ

Fig. 12.17

The Rolling Motion Renders the Bifurcation Diagram Useless

As an alternative, plot $\phi(t)$

$\phi(t)$ Bifurcation Diagram Over a Broad Range of γ

Period-1 Rolling Motion at $\gamma = 1.4$

Even though the pendulum is "rolling", $\dot{\phi}^{(t)}$ is periodic

An Alternative View: State Space Trajectory

An Alternative View: State Space Trajectory

Plot $\dot{\phi}(t)$ vs. $\phi(t)$ with time as a parameter

The periodic attractor: $[\phi(t), \dot{\phi}(t)]$ is an ellipse

 $\phi(t) = A\cos(\omega t - \delta)$ $\dot{\phi}(t) = -A\omega\sin(\omega t - \delta)$

The state space point moves clockwise on the orbit

State Space Trajectory for Period Doubling Cascade

Plotting cycles 20 to 60

State Space Trajectory for Chaos

State Space Trajectory for Chaos

Chaotic rolling motion Mapped into the interval $-\pi < \phi < \pi$

This plot is still quite messy. There's got to be a better way to visualize the motion ...

The Poincaré Section

Similar to the bifurcation diagram, look at a sub-set of the data

- 1) Solve for $\phi(t)$, and construct the state-space orbit
- 2) Plot a <u>periodic sampling</u> of the orbit

 $\left[\phi(t_0), \dot{\phi}(t_0)\right], \left[\phi(t_0+1), \dot{\phi}(t_0+1)\right], \left[\phi(t_0+2), \dot{\phi}(t_0+2)\right], \dots$

with t_0 chosen after the attractor behavior has been achieved

The Poincaré Section is a Fractal

The Poincaré section is a much more elegant way to represent chaotic motion

The Superconducting Josephson Junction as a Driven Damped Pendulum

 $\phi = \phi_2 - \phi_1$ = phase difference of SC wave-function across the junction

$$I_{de} + I_{rt} \cos(\omega t) = \frac{\hbar C}{2e} \left(\ddot{\phi} + \frac{1}{RC} \dot{\phi} + \frac{2eI_0}{\hbar C} \sin \phi \right).$$

Radio Frequency (RF) Superconducting Quantum Interference Devices (SQUIDs)

$$\Phi_{applied} + \Phi_{induced} = n\Phi_{0}$$

$$\Phi_{DC} + \Phi_{rf} \sin \omega t = \frac{\Phi_{0}\delta}{2\pi} + L \left(I_{C} \sin \delta + \frac{L}{R} \frac{\Phi_{0}}{2\pi} \frac{d\delta}{dt} + C \frac{\Phi_{0}}{2\pi} \frac{d^{2}\delta}{dt^{2}} \right)$$

$$Flux$$
Quantization
in the loop
$$\delta = \theta_{1} - \theta_{2} - \frac{2e}{\hbar} \int_{1}^{2} \vec{A} \cdot \vec{dl}$$

$$\Psi_{1} = |\Psi_{1}|e^{i\theta}$$

$$\Psi_{2} = |\Psi_{2}|e^{i\theta}$$

$$\Phi_{1(t)}$$

$$2\pi \left[f_{DC} + f_{rf} \sin \left(\frac{\omega}{\omega_0} \tau \right) \right] = \delta + \beta_{rf} \sin \delta + \frac{1}{RC\omega_0} \frac{d\delta}{d\tau} + \frac{d^2\delta}{d\tau^2}$$

$$eta rf = rac{2\pi LI_C}{\Phi_0} \quad \omega_0 = \sqrt{rac{1}{LC}} \quad au = \omega_0 t$$

THz Emission from the Intrinsic Josephson Effect A classic problem in nonlinear physics

 $\frac{2\pi}{-V}$ $d\varphi$ dt Φ_0

 $I = I_c \, sin \varphi$ $\Phi_0 = h/2e = 2.07 \text{ x } 10^{-15} \text{ Tm}^2$

$$f_{JJ} = \frac{2e}{h}V = (0.483 \,\text{THz/mV})V$$

DC voltage on junction creates an oscillating $\phi(t)$, which in turn creates an AC current that radiates

Best emission is seen when the crystal is partially heated above T_c!

Results are extremely sensitive to details (number of layers, edge properties, type of material, width of mesa, etc.)

Many competing states do not show emission

Emission enhanced near cavity mode resonances → requires non-uniform current injection, assisted by inhom. heating, π-phase kinks, crystal defects

Chaos in Newtonian Billiards Imagine a point-particle trapped in a 2D enclosure and making elastic collisions with the walls

Describe the successive wall-collisions

 $s_{n+1} = f(s_n, \theta_n)$ Non-Linear Maps for "Chaotic" systems !! $\theta_{n+1} = g(s_n, \theta_n)$

• The "Chaos" arises due to the <u>shape of the boundaries</u> enclosing the system.

Computer animation of extreme sensitivity to initial conditions for the stadium billiard