(prev)

<u>(top)</u>

<u>(next)</u>

Thermodynamics

- 1. Thermodynamic processes can be:
 - isothermal processes, $\Delta T = 0$ (so P ~ 1 / V);
 - **isobaric processes**, $\Delta P = 0$ (so T ~ V);
 - \circ isovolumetric or isochoric processes, $\Delta V = 0$ (so T ~ P);
 - adiabatic processes, $\Delta Q = 0$ (so $P \sim 1 / V^{\gamma}$);
 - cyclic processes, *all* state variables (P, V, T, E, S) return to their original values after each cycle.

(Throughout, we will assume the processes involve an ideal gas with constant n.)

In a cyclic process, the state variables all return to their initial values after one cycle.

2. Thermodynamical systems are often described using **PV diagrams**, with pressure plotted on the vertical axis and volume plotted on the horizontal axis. In such a diagram, the area under a curve is easily related to work:

Assuming this PV diagram describes a process involving an ideal gas, we can deduce the following:

$$as a \rightarrow b \quad P_a = P_b \qquad \qquad \Delta E_{a \rightarrow b} = n c_v (T_b - T_a) \qquad \Delta Q_{a \rightarrow b} = n c_p (T_b - T_a) \qquad W_{a \rightarrow b} = -P_a (P_b - P_b) = -$$

at b	$T_b = P_b V_b / (n R)$	$T_b > T_a$	$\Delta Q_{a \rightarrow b} > 0$	$W_{a \rightarrow b} < 0$
as b→c	$T_b = T_c$	$\Delta E_{b \to c} = 0$	$\Delta Q_{b \to c} = -W_{b \to c}$	$W_{b \rightarrow c} = -n R$
at c	$T_{c} = P_{c} V_{c} / (n R)$		$\Delta Q_{b \rightarrow c} > 0$	$W_{b \rightarrow c} < 0$
as c→d	$V_c = V_d$	$\Delta E_{c \to d} = n c_v (T_d - T_c)$	$\Delta Q_{c \to d} = n c_v (T_d - T_c)$	$W_{c \rightarrow d} = 0$
at d	$T_d = P_d V_d / (n R)$	$T_d < T_c$	$\Delta Q_{c \rightarrow d} < 0$	
as d→a	$P_{d}V_{d}^{c_{p}/c_{v}} = P_{a}V_{a}^{c_{p}/c_{v}}$	$\Delta E_{d \to a} = n c_v (T_a - T_d)$	$\Delta Q_{d \to a} = 0$	$W_{d \rightarrow a} = n c_v$
at a	$T_a = P_a V_a / (n R)$	$T_a > T_d$		$W_{d \rightarrow a} > 0$

In addition, we know that $\Delta E_{a \to b} + \Delta E_{c \to d} + \Delta E_{d \to a} = 0$, but in this case it only tells us that $T_b = T_c$.

From this we can compute the total heat added during the cycle:

$$n c_{p} (T_{b} - T_{a}) + n R T_{b} ln (V_{c} / V_{b})$$

and the total work done by the gas:

$$P_{a} (V_{b} - V_{a}) + n R T_{b} ln (V_{c} / V_{b}) - n c_{v} (T_{a} - T_{d}),$$

corresponding to the shaded area in the PV diagram.

Note that heat enters this "engine" in steps $a \rightarrow b$ and $b \rightarrow c$, and exits it in step $c \rightarrow d$; the total work done by the engine is positive. If the cycle were operated in reverse, it would be a "refrigerator", taking heat from a cooler environment during step $d \rightarrow c$ and exhausting it to a warmer environment from $c \rightarrow a$; the total work done by the refrigerator is negative. The meaning of this is that it requires external work to move heat from a cooler to a warmer place.

3. To see how this information is applied to a problem, consider the following thermodynamic cycle for n = 4 moles of a monatomic ideal gas:

- 1. from a to b, the system undergoes an isovolumetric increase in pressure;
- 2. from b to c, the system undergoes an isothermal expansion;
- 3. from c to d, the system undergoes an isobaric compression;
- 4. from d to a, the system undergoes an adiabatic compression.

Suppose we are given $P_a = 200,000 Pa$, $P_b = 300,000 Pa$, $P_c = 100,000 Pa$ and $V_a = 65 L$.

We know that $P_d = P_c$, $V_b = V_a$, and $T_b = T_c$. We can use the ideal gas law to compute the temperatures at points a and b from the pressure and volumes at those points: 390.907 K and 586.36 K, respectively. From the latter we can compute the volume at point c, which is 195 L.

We can use the adiabatic equation for an ideal gas:

$$P_d V_d^{\gamma} = P_a V_a^{\gamma}$$

to compute $V_d = 98.5216$ L. Finally, we can use the ideal gas law to find that $T_d = 296.252$ K.

Since b to c is an isothermal expansion, the <u>first law</u> tells us that $\Delta Q_{b\to c} = -\Delta W_{b\to c}$. Using the ideal gas law, we find

$$\Delta W_{b\to c} = -\int_{b}^{c} P \, dV$$

= - n R T_b $\int_{b}^{c} dV / V$
= - n R T_b ln (V_c / V_b) = -21,422.9 J.

(Note the sign: the gas does external work.)

Using the equations for isovolumetric and isobaric processes, we have

$$\Delta Q_{a\to b} = n c_v (T_b - T_a) \qquad \Delta Q_{b\to c} = n R T_b \ln (V_c / V_b) \qquad \Delta Q_{c\to d} = n c_p (T_d - T_c)$$

= 9750 J = 21,422.9 J =-24,119.6 J

Finally, consistent with the fact that $\Delta E = 0$ for a cycle, we compute

$$\Delta W_{a \to b} = 0 \quad \Delta W_{b \to c} = -n R T_b \ln (V_c / V_b) \qquad \Delta W_{c \to d} = P_c (V_c - V_d) \qquad \Delta W_{d \to a} = c_v (P_a V_a)$$
$$= -21,422.9 J \qquad = 9647.84 J \qquad = 4721$$

4. The efficiency of an engine is

$$\varepsilon = W / Q_h$$
$$= (Q_h - Q_c) / Q_h$$
$$= 1 - Q_c / Q_h.$$

Here, energy is taken in as Q_h , work W is done by the engine, and the waste heat is discharged as Q_c .

In the example above, $Q_{h} = 31,172.9 \text{ J}$, W = 7053.33 J, $Q_{c} = 24,119.6 \text{ J}$ and $\varepsilon = 22.6265\%$.

This calculation obscures some interesting facts:

- o for this cycle, as the number of <u>degrees of freedom</u> of the gas χ→∞ (with all other values unchanged), ε→0 as 1/χ (more heat must be removed during isobaric cooling to lower the temperature the same amount, because more of the heat comes from non-translational degrees of freedom which do not affect temperature);
- ε does not depend on n; increasing n will only lower the temperatures (via the ideal gas law; with more molecules, less energy is available per molecule);
- while the efficiency is a complicated function of the given values, it is turns out that, holding all other values constant, increasing P_b or decreasing P_c will increase ε , while the value of V_a does not alter ε at all and the chosen value of P_a is almost optimal.

Of course, for another cycle, the results can be very different.

For an air conditioner, **heat pump** in air conditioning mode, or refrigerator, $\varepsilon = Q_{\text{transferred}} / W_{\text{required}}$. The efficiency of a refrigerator can be greater than 1, since

$$\varepsilon = Q_c / (Q_h - Q_c)$$

$$= 1 / (Q_h / Q_c - 1),$$

where Q_c is the heat removed from the cooler environment and Q_h is the heat exhausted into the warmer environment. Note that Q_h must be greater than Q_c .

5. We often consider a cycle operating between two **heat reservoirs** (of infinite <u>heat capacity</u>), one at temperature $T_{h(ot)}$ and the other at temperature $T_{c(old)}$. For such a device, ΔS includes the engine itself *and* the reservoirs. Since the engine operates in a cycle, its ΔS is 0, so for isothermal transfers,

$$\Delta S = -\Delta Q_h / T_h + \Delta Q_c / T_c.$$

In general, $\Delta S = \int dQ / T$.

For the example above, $\Delta S_{b\to c} = 36.5355 \text{ J/K}$, and of course $\Delta S_{d\to a} = 0$. To compute $\Delta S_{a\to b}$ and $\Delta S_{c\to d}$, we use the ideal gas law to express T as a function of P and V:

$$\Delta S_{a \to b} = \int n c_v dT / T$$

= $\int n c_v (V dP / (n R)) / (P V / (n R))$
= $n c_v \ln (P_b / P_a) = 20.2262 J/K$

and

$$\Delta S_{c \to d} = \int n c_p dT / T$$

= $\int n c_p (P dV / (n R)) / (P V / (n R))$
= $n c_p \ln (V_d / V_c) = -56.7617 J/K$

The changes in entropy of the reservoirs are of course dependent on their temperatures. Assuming that the isobaric compression lost heat to a reservoir at room temperature ($< T_d$), and that the isochoric and isothermal processes gained heat from a reservoir at 320 C ($> T_b$),

$$\Delta S_{\text{cold reservoir}} = 24119.6 / 293.15 \text{ J/K} = 82.277 \text{ J/K} \text{ and}$$

 $\Delta S_{\text{hot reservoir}} = -31172.9 / 593.15 \text{ J/K} = -52.555 \text{ J/K},$

so that

$$\Delta S_{reservoirs} = 29.722 \text{ J/K},$$

which is greater than zero, as required by the second law of thermodynamics.

If we did not know T as a function of P and V, it would be necessary to connect each pair of endpoints with a combination of adiabatic and isothermal processes, and compute the change in entropy using

those new processes. For example:

Process a \rightarrow e is an adiabatic process, and e \rightarrow b is isothermal. P_e = 551,135 Pa and V_e = 35.3815 L, from

$$P_{a} V_{a}^{\gamma} = P_{e} V_{e}^{\gamma}$$
$$= n R T_{b} V_{e}^{\gamma-1}$$

This gives us (using the same equations as above)

$$\Delta Q_{a \rightarrow e} = 0$$
 and
 $\Delta Q_{e \rightarrow b} = 11,859.9 \text{ J}.$

Since entropy is a state variable,

$$\Delta S_{a \to b} = \Delta S_{e \to b} = 20.2262 \text{ J/K},$$

as before. Either way, the entropy change *of the engine* is zero, because it is a cycle: all state variables, including entropy, end at the same state in which they began. Therefore $\Delta S_{c \rightarrow d} = -56.7617 \text{ J/K}$.

- 6. The **Carnot cycle** is the most efficient cyclic thermodynamic process conceivable:
 - 1. isothermal expansion, with $\Delta Q = Q_h$ at T_h ;
 - 2. adiabatic expansion, with $T_h \rightarrow T_c$;

- 3. isothermal compression, with $\Delta Q = -Q_c$ at T_c ; and
- 4. adiabatic compression, with $T_c \rightarrow T_h$.

What makes it so is that each step of the Carnot cycle is **reversible**: all changes of state are infinitesimally close to equilibrium.

Reversible changes of state are infinitely long; all real changes of state are irreversible.

In isothermal processes, by definition the gas is in thermal equilibrium with the reservoir. An adiabatic process can be irreversible:

Consider a closed, thermally insulated volume with a partition in the middle, such that nearly all of the gas molecules are on one side of the partition; the other side is a nearly perfect vacuum. With removal of the partition, the gas adiabatically but irreversibly doubles in volume.

A reversible adiabatic process would be a change in volume by infinitesimal steps while the gas is thermally insulated.

Since it is reversible, the total entropy change of the Carnot cycle reservoirs is zero. This gives us

$$0 = -Q_h / T_h + Q_c / T_c$$

or

$$Q_c / Q_h = T_c / T_h.$$

If we attempt to compute the entropy change for $c \rightarrow d$ by finding a point f on the PV diagram such that $c \rightarrow f$ is adiabatic and $f \rightarrow d$ is isothermal, we find that we have constructed a Carnot cycle:

Hence the total entropy change is zero including the reservoirs, and its efficiency is

$$1 - T_d / T_b = 49.4761\%$$

The efficiency of a Carnot Refrigerator is $T_c / (T_h - T_c)$.

- 7. Thermodynamic cycles of practical interest include:
 - the **Diesel Engine**, consisting of adiabatic compression $(a \rightarrow b)$, isobaric heating $(b \rightarrow c)$, adiabatic expansion $(c \rightarrow d)$ and isovolumetric cooling $(d \rightarrow a)$;

$$\varepsilon = 1 - (T_d - T_a) / ((1 + 2 / \chi) (T_c - T_b))$$

• the **Otto Cycle**, consisting of adiabatic compression, isovolumetric heating, adiabatic expansion and isovolumetric cooling;

$$\varepsilon = 1 - (V_{small} / V_{large})^{(2 / \chi)}$$

• the **Stirling Engine**, consisting of alternating isothermal and isovolumetric processes.

$$\varepsilon = 1 / (1 + T_{lower} / |\Delta T| + \chi / (2 \ln (V_{large} / V_{small})))$$

In each case, ϵ was computed for an ideal gas. Note that in each case, it is independent of n, and increases with decreasing χ . This generalizes what we saw above: if we think of work as the result of increased temperature, less heat input is required to change the temperature of a gas with fewer degrees of freedom.

- 8. It is important to remember that these are *models* of real thermodynamic process. In actual physical processes,
 - gasses are *never* perfectly ideal;
 - n is *never* constant;
 - nothing has infinite heat capacity; and
 - no process is perfectly adiabatic (or, of course, reversible).

(prev)

<u>(top)</u>

(next)

©2012, Kenneth R. Koehler. All Rights Reserved. This document may be freely reproduced provided that this copyright notice is included.

Please send comments or suggestions to the author.