Study Guide for First Midterm Test, Phys 404, Spring 2007

ver. 1.1

Heat, work (on or by), [internal] energy, temperature, heat capacity, latent heat, entropy, enthalpy

- 3 basic models: paramagnet (2-state), Einstein solid, ideal gas What N and q (or U) mean for each,
 - and the resulting multiplicities $\Omega(N,...)$
 - Two weakly interacting systems, thermodynamic limit
 - Applicability of these models to other physical systems

Equipartition theorem at thermal equilibrium:

 $U = (f/2) Nk_{\rm B}T$; determining f: 3 for atoms,

5 for diatomic molecules, 2 for each direction of an Einstein oscillator

Ideal gas law $pV = Nk_{\rm B}T$

Quasistatic vs. free expansion, microstate vs. macrostate

Laws of thermodynamics, and what they mean

$$\Delta U = Q + W_{\rm on} = Q - W_{\rm by} \qquad \Delta S \ge 0$$

Change in internal energy, change in temperature, heat, work, during "simple" processes: isobaric ($\Delta p = 0$), isochoric ($\Delta V = 0 = W$), isothermal ($\Delta U = \Delta T = 0$), adiabatic (Q = 0). Along an isobar, $W_{by} = p(V_f - V_i)$; along an isotherm $W_{by} = Nk_BT \ln(V_f/V_i)$ Along an adiabat pV^{γ} is constant, as is (using the ideal gas law) $TV^{\gamma-1}$. Note $\gamma = (f+2)/f$

(These are all put together and reviewed when doing heat engines, though topics such as engine efficiency that are new in Chap. 4 are not covered on this test.)

Thermodynamic identity (not including chemical potential) T dS = dU + p dV and its uses; temperature and pressure in equilibrium in terms of partial derivatives of entropy

Spreadsheet computations of *Q*, *S*, *U*, *T*, *C* for these models, esp. Einstein solid

Very large numbers; Stirling's approximation, $\ln n! \approx n \ln n - n$, and how to use it

Expansions in $\varepsilon \ll 1$ of $\ln(1\pm \varepsilon)$, $\exp(1\pm \varepsilon)$, $(1\pm \varepsilon)^{\pm x}$

Important constants: $k_{\rm B} \approx 10^{-4} \text{ eV/K}$, $C_{\rm V}$ of 1 gm of water is 1 cal/K but of ice is $\sim \frac{1}{2}$ cal/K

 $\Omega(N, N_{\uparrow}) = \frac{N!}{N_{\uparrow}! (N - N_{\uparrow})!}$ $\Omega(N, q) = \frac{(q + N - 1)!}{q! (N - 1)!}$ $\Omega(U, V, N) = f(N) V^{N} U^{f_{N/2}}$