Study Guide for Final Exam, Phys 404, Spring 2007

The final exam covers the entire course but emphasizes the material since the seond midterm: over half the questions will come from chaps. 6 and 7. You are allowed a 1-page cheat sheet.

Review homework problems

Boltzmann factor, partition func'n *Z*, probabilities $\mathcal{P}(s) = Z^{1} \exp(-\beta E(s)); Z = \sum_{s} \exp(-\beta E(s)); \beta = 1/k_{B}T$

Z for specific cases: paramagnet: $Z = 2 \cosh \beta \mu B$; oscillator: $Z = (1 - e^{-\beta \epsilon})^{-1}$; ideal gas $Z_{tr} = (L/\lambda_Q)^3$ $U = N\bar{E} = -N \partial \ln Z/\partial \beta$ $C_V = (\partial U/\partial T)_V$ $S(T) = \int_0^T \frac{C_V(T')}{T'} dT'$

Application to paramagnetism, diatomic-molecule rotation, proof of equipartition theorem Maxwell speed and velocity distributions in 3D, also 1D, 2D. Mean, mode, rms

 $F \equiv U - TS = -k_{\rm B}T \ln Z; \quad S = -(\partial F/\partial T)_{N} \qquad p = -(\partial U/\partial V)_{\rm S,N}; \quad B = -V(\partial p/\partial V)_{T,N}$ $\mu = -T(\partial S/\partial N)_{U,V} = (\partial U/\partial N)_{S,V} = (\partial F/\partial N)_{T,V} = (\partial F/\partial N)_{T,V} = G/N|_{T,p}$ Partition function for composite systems: distinguishable vs. indistinguishable Ideal gas $Z_{\rm tr} = (L/\lambda_{\rm Q})^{3}, \quad Z = (VZ_{\rm int}/v_{\rm Q})^{N}/N!$, counting modes in box, quantum length $\lambda_{\rm Q} = h/\sqrt{(2\pi mk_{\rm B}T)}$

Gibbs factor, grand partition function \mathcal{Z} , probabilities $\mathcal{P}(s) = \mathcal{Z}^{-1} \exp[-\{E(s)-\mu N(s)\}/k_{\rm B}T]$ Langmuir adsorption isotherm

Density of states $\Im(\epsilon) \propto \epsilon^{(d-2)/2}$ for $\epsilon \propto n^2$ and how it relates to *N*, *U*, etc.; for $\epsilon \propto n$, $\Im(\epsilon) \propto \epsilon^{(d-1)}$ $\epsilon_{\rm F} = (\hbar^2/2m)(3\pi^2N/V)^{2/3}$ (for d=3) $\Im(\epsilon)$ has units 1/energy

Fermions: Pauli exclusion principle, partition function, Fermi-Dirac dist. $\overline{n}_{FD}(\epsilon) = 1/[e^{\beta(\epsilon-\mu)}+1]$ Degenerate Fermi gas at *T*=0: definitions T_F, ϵ_F ; quantities *U*, *p*, *B* Sommerfeld expansion, meaning, usage to get lowest order (in T) contributions to shift of chemical

$$\int_{-\infty}^{\infty} H(\varepsilon)\overline{n}_{FD}(\varepsilon)d\varepsilon = \int_{-\infty}^{\mu} H(\varepsilon)d\varepsilon + \frac{\pi^2}{6}(k_BT)^2H'(\mu) + O(k_BT)^4$$

potential μ from $\epsilon_{\rm F}$, increase in U, $C_{\rm V} \propto T$

Bosons: Planck distribution for simple harmonic oscillator, photons, mode counting (again) Planck spectrum ($\mu = 0$) plotted vs ϵ or vs. λ ; total power radiated (eq. 7.99) (emissivity) (area) σ T⁴ Wien displacement law; $\lambda_{max} T = \text{const.}$

Debye theory of lattice vibrations of solids: deficiency of Einstein model at low T, phonons and their [acoustic] dependence on *n*; idea of n_{max} ; $C_V \propto T^3$

Bose-Einstein condensation: N_0 and N_0/N ; role of chemical potential and of convergence of integral of $\Im(\epsilon) \overline{n}_{BE}(\epsilon) = 1/[e^{\beta(\epsilon-\mu)}-1]$

 $N_{\text{exc}} = (T/T_{\text{c}})^{3/2} N$ and $N_0 = N - N_{\text{exc}}$ (for $T < T_{\text{c}}$); consequent U, C_{V} , p

Ising model: energy = $J \Sigma_{(i,j)} s_i s_j$ where $s_i = \pm 1$ (up or down) Mean field $k_B T_C = J \times (\# \text{ nearest neighbors})$

Important Figs.: 6.11, 6.12, 6.16, 7.6, 7.7, 7.9, 7.14, 7.16, 7.19, 7.26, 7.29, 7.31, 7.32, 7.33, 7.34, 7.37; and what they mean/how to use them