Physics 404
HOMEWORK ASSIGNMENT \#10
Due date: Tuesday, May 8 Deadline: Thursday, May 10 (last class)
S means a problem in Schroeder’s text; GT means a problem in Gould \& Tobochnik.

1. S 7.44 Note that $\int_{0}^{\infty} \frac{x^{2}}{e^{x}-1} d x \approx 2.404$
2. S 7.52
3. S 7.54
4. S 7.63 The general solution for the specific heat is $C=\frac{2 N k_{B} T^{2}}{T_{D}^{2}} \int_{0}^{T_{D} / T} \frac{x^{3} e^{x}}{\left(e^{x}-1\right)^{2}} d x$, which you do not need to plot. Also, you can quote the result of numerical integration given in the hint to S 7.44 above.
5. S 7.66
6. S 7.70 a-c. In part b) set $\mu=0$ and use $\int_{0}^{\infty} \frac{x^{3 / 2}}{e^{x}-1} d x \approx 1.783$.

In part b) you should show that $C_{\mathrm{V}}=1.926\left(T / T_{\mathrm{c}}\right)^{3 / 2}$.
Using this, show that (for $\left.T<T_{\mathrm{c}}\right) \quad S(T)=1.284 N k_{\mathrm{B}}\left(T / T_{\mathrm{c}}\right)^{3 / 2} \quad$ and $\quad F(T)=-0.514 N k_{\mathrm{B}} T\left(T / T_{\mathrm{c}}\right)^{3 / 2}$.

