QUANTUM PHYSICS II PROBLEM SET 7 due November 12th, before class

I. BORN RULE

A spinless particle moving in one dimension is described by the state $|\psi\rangle = \int_{-\infty}^{\infty} dx \sqrt{42} e^{-42|x|} |x\rangle$, where $|x\rangle$ are the eigenstates of position with eigenvalue x.

- i) What is the probability of finding the particle between x = 0 and x = 17?
- ii) If the momentum is measured, what are the possible outcomes and their respective probabilities?

II. DEGENERATE MATTERS

Consider a three-dimensional harmonic oscillator with the hamiltonian

$$\hat{H}_0 = \frac{\hat{p}_x^2 + \hat{p}_y^2 + \hat{p}_z^2}{2m} + \frac{m\omega^2}{2}(\hat{x}^2 + \hat{y}^2 + \hat{z}^2). \tag{1}$$

- 1) Show that the eigenstates of \hat{H}_0 are of the form $|n_x, n_y, n_z\rangle = |n_x\rangle|n_y\rangle|n_z\rangle$, where $|n\rangle$ are the eigenstates of the one-dimensional harmonic oscillator. Find the energy of these states and show that the first excited state is degenerate. Can you understand this degeneracy on the ground of any symmetry?
- 2) An extra potential of the form $V(x, y, z) = \lambda \delta(x)$ is added to \hat{H}_0 . Find the shift in energy of the ground state and the first excited states correct up to order $\mathcal{O}(\lambda)$.

III. DON'T FORGET YOU BRAS AND KETS

$$\langle y \,| \hat{p} | x \rangle = \tag{2}$$

$$\langle y | \hat{p} | \psi \rangle = \tag{3}$$

$$\langle y \,| \hat{p}^2 | \psi \rangle = \tag{4}$$

$$\langle y | f(\hat{p}) | \psi \rangle = \tag{5}$$

where $|x\rangle, |x\rangle$ are eigenkets of the position operator, $|\psi\rangle$ and arbitrary ket and $f(\hat{p})$ an arbitrary function of the momentum operators (which you can assume has a nice Taylor expansion). You should write your answer in terms of $\psi(x) = \langle x | \psi \rangle$ where appropriate.

IV. THE GREAT VARIATIONAL CHALLENGE

Make a variational calculation of the ground state energy of anharmonic oscillattor with hamiltonian

$$\hat{H} = \frac{\hat{p}^2}{2m} + \lambda \hat{x}^4. \tag{6}$$

First use dimensional analysis to determine the form of the answer up to a numerical constant. Then devise your own variational ansätz to estimate the numerical constant. Your ansätz may contain any number of parameters. The person with the smallest energy will win a doughnut and a certificate of "Grand Master of All Variational Caculations". You are allowed to use a computer for analytic or numerical steps. This is a no-holds barred competition and only results matter.

V. OPTIONAL: DON'T FORGET YOUR BRACKETOLOGY

Consider a spinless particle moving in one-dimension. The eigenbasis of the position operator $|x\rangle$ is indexed by the values of the position x. Write the following expressions in terms of the position space wave functions $\psi(x) = \langle x | \psi \rangle$, $\phi(x) = \langle x | \phi \rangle$:

- i) $\langle \phi | \psi \rangle$.
- ii) $\langle \phi | A(\hat{x}) | \psi \rangle$, where $A(\hat{x})$ is any function of the position operator.
- iii) $\langle \phi | \hat{p} | \psi \rangle$, where \hat{p} is the momentum operator.
- iii) $\langle \phi | \hat{p}^2 | \psi \rangle$, where \hat{p}^2 is any function of the momentum operator.

Consider a spinless particle moving in three-dimensions. The eigenbasis of the position operator $|\mathbf{r}\rangle = |r, \theta, \phi\rangle$ is indexed by the values of the position \mathbf{r} . Write the following expressions in terms of the position space wave functions $\psi(\mathbf{r}) = \langle \mathbf{r} | \psi \rangle$, $\phi(\mathbf{r}) = \langle \mathbf{r} | \phi \rangle$:

- i) $\langle \phi | \psi \rangle$.
- ii) $\langle \phi | A(\hat{\mathbf{r}}) | \psi \rangle$, where $A(\hat{\mathbf{r}})$ is any function of the position operator.

Consider now a spinl 1/2 particle moving in three-dimensions. The eigenbasis of both the position operator and the z-component of spin $|\mathbf{r}\rangle = |r, \theta, \phi, m_s\rangle = |r, \theta, \phi\rangle \otimes |m_s\rangle$ is indexed by the values of the position \mathbf{r} and $m_s = \pm 1/2$. Write the following expressions in terms of the position space wave functions $\psi_{m_s}(\mathbf{r}) = \langle \mathbf{r}, m_s | \psi \rangle$ (and similarly for $|\phi\rangle$):

- i) $\langle \phi | \psi \rangle$.
- ii) $\langle \phi | A(\hat{\mathbf{r}}) | \psi \rangle$, where $A(\hat{\mathbf{r}})$ is any function of the position operator.
- iii) $\langle \phi | A(\hat{\mathbf{r}}) \hat{S}_z | \psi \rangle$, where $A(\hat{\mathbf{r}})$ is any function of the position operator.