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Question A:

A spin lees particle moves in one dimension and, at some instant, is described by the wave function

 (x) = hx| | i. At that instant the momentum of the particle is measured. What are the possible out-

comes of this measurement and with which probabilities (probability densities, to be more precise) ?

Solution:

To measure momentum, we need to express the wave function in eigen basis of momentum. That means to

find

˜ (p) from the current postion based wave function  (x).
˜ (p) = hp| | i =

R
dx hp| |xi hx| | i

Since p̂ = �i~ d

dx

, hp| |xi = 1p
2⇡~e

� ipx

~
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˜ (p) = 1p
2⇡~

R
e�

ipx

~  (x)dx.

Thus, the possible outcomes of momentum measurement should be in range of [�1,1], with corresponding

probability of | ˜ (p)|2

Question B:

See Gri↵ths 4.49

Solution:

(1)Since the wave function is normalized, 1 = |A|2(1 + 4 + 4) = 9|A|2
) A =

1
3

(2)As we know,

~
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(3) From Eq. 4.151,
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(4) For S
y

,

~
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2 are two eigenvalues as well. �
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Question C:

See Gri↵ths 5.1

Solution:

(1) (m1 +m2)
~R = m1 ~r1 +m2 ~r2 = m1 ~r1 +m2(~r1 � ~r) = (m1 +m2)~r1 �m2~r

) ~r1 =

~R+

m2
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Let

~R = (X,Y, Z), r = (x, y, z).
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Likewise, 52
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As we see, the first term depends only on

~R, while the second on ~r. So either must be a constant. Let’s

name them E
R

, E
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respectively. For sure, E
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