Phys 402
Spring 2009
Homework 2
Due Friday, February 13, 2009 @ 9 AM

1. Griffiths, 2nd Edition, Problem 4.22 (a) and (b) only Ang. Mom. raising operator \(L_z \) and \(Y_{\ell} \).

3. Griffiths, 2nd Edition, Problem 4.26 (a) only Spin operator/matrix commutators

5. Griffiths, 2nd Edition, Problem 4.29 Eigenvalues and eigenfunctions of \(S_z \)

Extra Credit #3

Extra Credit #4
Griffiths, 2nd Edition, Problem 4.33 Spin precession in an oscillating magnetic field, time-dependent Schrödinger equation

Office Hours Thursday, 3:00 – 4:30 PM, Room 0360
(see class web site for directions to the room)

TA (Wai-Lim Ku) Office Hours, Thursday 4:30 – 5:30 PM, Room 0104
1. The electron in a hydrogen atom occupies the combined spin and position state

\[
\Psi = R_{21}(r) \left(\frac{1}{\sqrt{3}} Y_{1}^{0}(\theta, \phi) \chi_{+} + \frac{2}{\sqrt{3}} Y_{1}^{1}(\theta, \phi) \chi_{-} \right)
\]

a) If you measured the orbital angular momentum squared \((L^2) \), what values might you get, and what is the probability of each?

b) Same for the \(z \) component of orbital angular momentum \((L_z) \)

c) Same for the spin angular momentum squared \((S^2) \)

d) Same for the \(z \) component of spin angular momentum \((S_z) \)
2. Show that it is impossible for a spin-1/2 particle to be in a state \(\chi = \begin{pmatrix} a \\ b \end{pmatrix} \) such that \(\langle S_x \rangle = \langle S_y \rangle = \langle S_z \rangle = 0 \). Hint: start by examining \(\langle \sigma_z \rangle \sim \langle S_z \rangle. \)