Physics 402 Spring 2009 Prof. Anlage

Homework 1 Due Friday, February 6, 2009 @ 9 AM

- 1. Griffiths, 2nd Edition, Problem 4.1 (a) only Commutation relations [r_i, p_j], etc.
- 2. Griffiths, 2nd Edition, Problem 4.2 (a) and (b) only Separation of variables in a 3D Cartesian infinite cubical well. Find the eigenfunctions and eigenvalues. Determine the <u>degeneracies</u> of some of the lowest-energy states.
- 3. Griffiths, 2nd Edition, Problem 4.3 Construct some Legendre polynomials and spherical harmonics.
- 4. Griffiths, 2^{nd} Edition, Problem 4.13 (a) and (b) only Use the H-atom GS WF to calculate expectation values $\langle r \rangle$, $\langle x^2 \rangle$, $\langle x \rangle$, $\langle x^2 \rangle$
- 5. Griffiths, 2^{nd} Edition, Problem 4.19 (a) and (b) only Ang. Mom. commutation relations $[L_z, x]$, $[L_z, p_z]$, $[L_z, L_x]$, etc.
- 6. Griffiths, 2^{nd} Edition, Problem 4.22 (a) and (b) only Ang. Mom. raising operator L_+ and Y_{ξ}^{ℓ} . THIS PROBLEM IS NOW DUE WITH HW#2

Extra Credit 1 Schrod. Eq. in 3D \rightarrow Separate variables \rightarrow 0-equation \rightarrow change of variables x=cos0, etc. \rightarrow Associated Legendre equation \rightarrow take m=0 and use series solution method around x=0 \rightarrow keep solution finite at x=±1 \rightarrow find ℓ must be an integer

Extra Credit 2 Radial equation \rightarrow substitute $u(r) = rR(r) \rightarrow$ find asymptotic behavior of $u(r) \rightarrow$ find new equation for $v(r) \rightarrow$ solve by series solution \rightarrow find condition to keep solution normalizable \rightarrow find eigen-energies of H-atom

Office Hours Thursday, 3:00 – 4:30 PM, Room 0360 (see class web site for directions to the room)

TA (Wai-Lim Ku) Office Hours, Thursday 4:30 – 5:30 PM, Room 0104

Physics 402 Spring 2009 Prof. Anlage Discussion Worksheet for February 4, 2009

- **1.** Consider the solutions to the radial part of the Schrödinger equation for the hydrogen atom, $R_{n\ell}(r)$. Note that the radial part of the probability density is proportional to $|rR_{n\ell}(r)|^2$.
- **a)** Figure out a general expression for the number of zeros in $R_{n\ell}(r)$, excluding those at r = 0, and $r = \infty$, in terms of n and ℓ .
- **b)** Sketch the effective potential for $\ell = 0$ and $\ell = 1$ and draw several bound states. Sketch solutions to the radial equation (given below) in terms of the "probability amplitude" $rR_{n\ell}(r)$ for $\{n = 1, \ell = 0\}$, $\{n = 2, \ell = 1\}$, and $\{n = 3, \ell = 1\}$. The effective potential is the term in square brackets:

$$\frac{-\hbar^{2}}{2m}\frac{d^{2}(rR)}{dr^{2}} + \left[\frac{-e^{2}}{4\pi\varepsilon_{0}}\frac{1}{r} + \frac{\hbar^{2}}{2m}\frac{\ell(\ell+1)}{r^{2}}\right](rR) = E(rR)$$

Use your knowledge of the asymptotic behavior of the solutions, as well as properties of solutions to one-dimensional differential equations, to make your sketches semi-quantitative.