
Lecture 9 Highlights 
 

In perturbation theory we start with a Hamiltonian 0Η  for which we can find the 
exact eigenvalues and eigenfunctions0

nE 0
nψ : 

        (1) 0000
nnn E ψψ =Η

 We are interested in solving another problem with a very similar 
Hamiltonian , where '0 Η+Η=Η λ 'Η is called the perturbing Hamiltonian, and 1<<λ  is 
a small parameter to remind us that the perturbation should be “small.”  (Later we will 
take 1=λ and replace it with a “smallness” condition on the perturbing Hamiltonian 'H .)  
The exact solution to this problem involves new eigenvalues and eigenfunctions: 
          (2) nnn E ψψ =Η
 To (approximately) solve this new problem we do a perturbation series expansion 
in powers of the small parameterλ : 
  ...2210 +++= nnnn ψλλψψψ       (3) 
        (4) ...2210 +++= nnnn EEEE λλ
The terms on the RHS represent zeroth-order, first-order, and second-order corrections to 
the eigenfunctions and eigenvalues.  Note that the superscripts on theψ ’s and E ’s are 
NOT powers, but labels that keep track of the order of the correction.  Remember also 
that n represents a list of quantum numbers, in general.  The expectation is that the new 
eigenvalues and eigenfunctions will be close to those of the unperturbed problem. 
 Substituting (3) and (4) into (2) and gathering like powers of the bookkeeping 
parameter λ  yields:  
   00000 : nnn E ψψλ =Η

       (5) 01100101 ': nnnnnn EE ψψψψλ +=Η+Η

      (6) 0211201202 ': nnnnnnnn EEE ψψψψψλ ++=Η+Η
The zeroth-order equation reproduces Eq. (1) for the unperturbed problem.  The first-
order equation can be solved using the fact that 1

nψ can be expressed as a linear 
combination of all the eigenfunctions of 0Η (a postulate of QM) as, 
  ∑=

l
l
01 ψψ nln a ,       (7) 

where the are unknown at this point.  Putting (7) into (5) and exploiting 
orthonormality of the unperturbed eigenfunctions

lna
0
nψ yields two equations: 
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These are the first-order corrections to the nth eigenvalue and eigenfunction, respectively. 
Note that the sum in Eq. (9) excludes the case n=l , and assumes that the energy levels 
are non-degenerate.  We expect that 01

nn EE << and 0030*0 ' ll EErd nn −<<Η∫ ψψ  for 

the perturbation expansion to be valid (this is the “smallness” condition on the perturbing 
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Hamiltonian).  The first order change in energy is the expectation value of the perturbing 
Hamiltonian in the un-perturbed basis.  As seen from Eq. (9), the perturbation has the 
effect of mixing together all of the eigenfunctions of the unperturbed case, in general.  
From the denominator of Eq. (9) one sees that states that are nearby in energy tend to be 
mixed in the most. 
 Now an example is in order.  Consider the infinite square well of width  with a 
small rectangular bump in the bottom of the potential well.  How does this bump change 
the ground state energy and ground state eigenfunction?  It is not possible to solve the 
Schrödinger equation for this problem exactly.  However we can achieve an approximate 
solution through perturbation theory.  We write the unperturbed case as follows. 
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The unperturbed eigenvalues and eigenfunctions are: 

 2

222
0

2ma
nEn

hπ
=  

 
⎪⎩

⎪
⎨
⎧

><

<<⎟
⎠
⎞

⎜
⎝
⎛

=
a x0,for  0

ax0for  
a

xns
a
2

)(0

x

inxn

π
ψ  

Here is a positive integer. n
 The perturbing Hamiltonian is this: 
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whereδ could be a positive or negative energy.  This represents a small “brick” placed in 
the bottom of the infinite square well. 
 Examine the effects of this perturbation on just the ground state ( =1) of the 
system.  The un-perturbed ground state is characterized by: 
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The first order correction to the ground state energy is: 
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If δ is positive (upward bump on the bottom of the well), the energy of the ground state 
shifts up.  A small well on the bottom ( 0<δ ) will decrease the energy.  The new ground 
state energy to first order is given by: 
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 The first order correction to the ground state wavefunction is: 
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The first term in the sum is , but the integral in that case is zero (check it!).  The 
first non-zero term is , and this yields for the coefficient : 
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The integral can be done by standard methods and yields: 
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The new ground state wavefunction now is to (part of) first order: 
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If we assume 0>δ , note that the correction decreases the wavefunction amplitude in the 
middle of the well (near x = a/2) and increases it in the “wings”, away from the bump, as 
we might expect.  The unperturbed ground state wavefunction (red) and corrected ground 
state wavefunction (blue) are sketched in the figure below.  The perturbing potential is 
also shown in green. 
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