
Lecture 6 Highlights 
 

We began by recalling the energy level spectrum of the Hydrogen 
atom, , where 2/eV6.13 nEn −= ,...4,3,2,1=n   There are an infinite number of bound 
states of the proton and electron.  Later we will study time-dependent perturbations that 
cause transitions between these ‘stationary states.’  When a hydrogen atom is excited to a 
higher energy level (e.g. by an electrical discharge in the gas), it can relax and give off 
light.  The wavelengths of the emitted light are quantized as; 
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where is the initial (integer) n-value and  is the final (integer) n-value for the 
transition. 
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 We looked at the spectrum of Hydrogen with diffraction gratings.  The results for 
the first few visible lines in the Balmer series of the H-atom are: 
   
Balmer Series Line Color Observed λ (nm) Calculated λ (nm) 
Hα Red 656.3 656.0 
Hβ Turquoise / Cyan 486.1 486.3 
Hγ Blue 434.1 434.2 
 
 Not bad, but the differences between calculated and observed wavelengths are 
systematic errors.  The theory of the H-atom is not complete! 
 
 The discrepancies are even greater when a magnetic field is applied to the 
Hydrogen atom.  Classically, the electron orbiting the proton produces a current loop and 
therefore a magnetic moment μr  (which points anti-parallel to the angular momentum 
vector L

r
).  In the presence of an external magnetic field B

r
, the Hydrogen atom takes on 

an additional contribution (perturbation) to its total energy, given by  
(Griffiths, page 178).  This is part of the Zeeman effect (Griffiths page 277), and it will 
split the degenerate (i.e. ) energy levels of the Hydrogen atom into states, 
depending upon the projection of 
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.  This in turn causes a splitting of the spectral 
lines, from a single line (in 0=B

r
) to 12 +l  lines in finite field.  Note that since  is an 

integer or zero,  is always an odd integer.  Indeed an odd number of spectral lines is 
often observed.  However splitting into an even number of lines is also observed!  (The 
Stern-Gerlach experiment was the first to show splitting into an even number of states in 
a magnetic field.)  This cannot be explained by our current theory of the H-atom! 
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  To resolve this problem Wolfgang Pauli suggested that a new quantum number 
was needed (beyond , and ).  He called this new property of the electron a “l,n m two-
valuedness not describable classically.”  It was later thought to be due to the rotational 
motion of the electron on its axis, but Pauli showed this to be incorrect (you will too: 
HW2, problem 4.25).  Nevertheless this property is now known as the “intrinsic spin 
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angular momentum of the electron” and denoted by the 3D vector S
r

.  It is an example of 
an N = 1 angular momentum ladder that we discussed in the last lecture.  This gives rise 
to 2 values of a z-projection, and can explain the appearance of an even number of 
spectral lines in a magnetic field.   

We postulate that the spin angular momentum has all of the same operators as 
orbital angular momentum: 

 operator with eigenvalues , 2S 2)1( h+ss =s 1/2 for the electron, 
 operator with eigenvalues , with zS hsm =sm -1/2 or +1/2. 

The other operators are given on pages 171 and 172 of Griffiths.  They obey 
commutation relations (and have uncertainty principles) analogous to those for orbital 
angular momentum.  Note that there are 212 =+s states in the ladder, and their z-
component values are symmetric about zero, as expected for an angular momentum 
ladder.  Because the internal degrees of freedom of the “spin angular momentum” are not 
accessible in 3D space (there are no ‘spin-spherical-harmonics’ that are functions 
ofθ andφ ), we use the ket notation to describe the spin eigenstates: sms .  Spin states 
live in Hilbert space.  For example the result of applying the spin raising and lowering 
operators ( yx iSSS ±≡± ) to the ket are: 

 1)1()1( ±±−+=± ssss msmmssmsS h  
Note that sometimes will be written simply as when it is clear from the context that 
it represents the eigenvalue. 
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