Lecture 5 Highlights

We began by reviewing the ladder operators a_{\pm} for the one-dimensional harmonic oscillator [Griffiths page 42]. These operators move one up and down the ladder of equally-spaced energy eigenstates (ψ_{π}) of the 1D harmonic oscillator:

$$a_{+}\psi_{n} = \sqrt{n+1} \ \psi_{n+1}$$
 $a_{-}\psi_{n} = \sqrt{n} \ \psi_{n-1}$

Each state has an associated eigen-energy $E_n = (n+1/2)\hbar\omega$. The ladder of states is semi-infinite: it has a lowest rung (the ground state, n=0) but there is no upper limit on the value of n.

One can define similar operators for the z-component of angular momentum, $\boldsymbol{L_z}$, and they are:

$$L_{\pm} = L_{x} \pm iL_{y}$$

These operators move one up and down a ladder of states of fixed L^2 eigenvalue, and the rungs are labeled by the L_z component eigenvalue $m\hbar$. The proof follows Griffiths, pages 162-166. The 'ladder of states' is finite in this case because the z-component of \vec{L} can never exceed the total length of \vec{L} (i.e. the square root of the L^2 eigenvalue). One finds that the ladder of states is symmetric about a z-component value of zero, and that there are an integer number of states (N) between the bottom rung and the top rung of the ladder. If the maximum eigenvalue of L_z on the ladder is called $\ell\hbar$, then the minimum value is $-\ell\hbar$, and the L^2 operator has eigenvalue $\ell(\ell+1)\hbar^2$. Note that since $\ell < \sqrt{\ell(\ell+1)}$ for non-zero ℓ , the \vec{L} vector never points precisely in the z-direction. The most important result is that $\ell = N/2$, meaning that ℓ is either an integer or half-integer (or zero). For the orbital angular momentum of the electron in the hydrogen atom ℓ is an integer or zero. Soon we will consider other types of angular momentum in which the largest z-component eigenvalue is a half-integer.