
Lecture 40 Highlights 
 

The Variational Method is another approximation method that is very useful for 
estimating the ground state energy of a complicated Hamiltonian.  The idea is very 
simple.  Given a Schrödinger problem to solve Ψ=ΗΨ E (which cannot be solved 
exactly), make your best guess for the ground state wavefunction )(, rGuessGS

r
Ψ (make sure 

it is normalized: 1,, =ΨΨ GuessGSGuessGS ) and calculate the expectation value of the 

Hamiltonian with this wavefunction: GuessGSGuessGS ,, ΨΗΨ .  The true ground state 
energy is guaranteed to be less than or equal to this expectation value: 

GuessGSGuessGSGSE ,, ΨΗΨ≤ .  Basically this is true because your guess wavefunction is in 
general a linear combination of the true ground state wavefunction and many excited 
states.  Hence the expectation of energy is bounded below by the true ground state 
energy.   

To improve the guess wavefunction, one can add many adjustable parameters to 
it, call them K,,, 321 λλλ   These are often physically motivated quantities, such as the 
width of the wavefunction in real-space, or the effective charge of the nucleus as seen by 
an electron in an atom, or perhaps the distance between two nuclei in a molecule, etc.  
Once again normalize the new guess wavefunction ),,,,( 321, K

r λλλrGuessGSΨ and calculate 
the expectation value of the Hamiltonian.  Now we can minimize the expectation value of 

with respect to variations in the parameter values.  In other words, set Η
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 for all parameters iλ .  This 

will give a closer estimate of the ground state energy.  How close?  Unfortunately there is 
no way to estimate how far the result is from the true ground state energy. 

In class we did the example of a 1D problem of an infinite delta function 
well )()( xxV δα−=  bound state.  We guessed a parameterized ground state 
wavefunction of the form: , which is a Gaussian centered on the 

well.  The parameter 
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b/1 is basically the width of the wavefunction in real space.  We 
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bA from normalization.  The rest of the discussion followed pages 

294-296 of Griffiths.  Note that the expectation of kinetic energy of the 

particle
m
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= scales inversely with the square of the width of the wavefunction.  

More narrow-in-space wavefunctions “force” the particle to have a greater uncertainty in 
momentum and therefore a larger expectation value of kinetic energy.  The expectation 

value of potential energy is
π
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−= .  The expectation value of the Hamiltonian 

VT +=Η is minimized for the special value of 4
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expectation value of 2
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−=Η , which is close to (but larger than) the true ground 

state energy of 2
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We also briefly discussed the Helium atom problem covered in detail in section 
7.2 of Griffiths, and introduced the effective charge of the nucleus, Ze+ .  Note that the 
variational method does not change the Hamiltonian of the problem - that is given by 
nature.  Instead it allows us to embellish the guess wavefunctions with additional 
parameters to improve our estimate of the ground state energy. 
 The variational method is remarkably tolerant and gives very good estimates of 
ground state energies even with guessed wavefunctions that are not that similar to the true 
ground state wavefunction.  As long as the guessed wavefunction has the correct general 
character, it seems to work quite well. 
 One can also calculate upper-bound estimates of excited state energies.  This can 
be done by first making a best variational guess at the ground state wavefunction and 
then constructing an excited state wavefunction guess GuessFES ,Ψ that is orthogonal to the 

ground state guess, 0,, =ΨΨ GuessFESBestGuessGS with 1,, =ΨΨ GuessFESGuessFES .  Based on 
our studies of 1D quantum mechanics, we might expect that each higher state will have 
one additional node in the wavefunction, compared to the previous state. 
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