Lecture 4 Highlights

The angular part of the Schrodinger equation:
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can now be written as an eigenvalue equation: L?Y,"(6,¢) = h*((¢ +1)Y," (6,4) . The

eigenvalue of L* is #°¢(¢+1), and the eigenfunction is the ‘spherical harmonic’

Y. (0,9).

One can find that the z-component of the angular momentum (vector) operator
L =Fx(-inV)isgivenby: L, = —iha—é;j. When applied to the spherical harmonics, it
gives: L,Y,"(0,¢) = mhY,"(6,¢) . Hence the spherical harmonics are also eigenfunctions

of the L, operator, with eigenvalue m# . The spherical harmonics are simultaneous
eigenfunctions of L>and L.

We discussed the statistical interpretation of ‘Y(,m (2 ¢)‘2 and examined the case of

¢ =2 (see Supplementary Material on the class web site).

The radial equation has an infinite number of bound states (E<0) for any given
value of 7.
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And the radial equation becomes:
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After *peeling off’ the asymptotic behavior of this equation at large and small p , we try
this (ansatz) substitution:

u(p) = p"ev(p),
where v(p) is an unknown function that should capture the wiggling between small and
large p. The resulting equation for v(p) is:
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Try an infinite series solution around p=0;




v(p) = Zajpj
j=0
This leads to a recursion relation for the coefficients a;:
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The recursion relation calculates the next value of a; given the previous value. However

this recursion relation leads to a non-normalizable solution for R(r) (~e™) unless the

series terminates at some finite upper limit. To terminate the series, one can make the
numerator of the recursion relation equal to zero at some index value j = j,... This

requires that;
2)x T2(0+1)—p, =0.
Now definen = j ., +/¢+1. Note that since ¢ =0,12,3,... (from the solution to the
@equation) and j,., =0.1,23,... (since these are the index values in the series solution), it
must be that nis an integer too, with the possible values n =1,2,3,4,...
The above condition to terminate the infinite series now becomes: p, = 2n.
Using the definition of p,and «, we can solve for the only unknown, namely the eigen-

energy E, which now becomes quantized. This forces a quantization condition on the
total energy eigenvalue of the original Schrédinger equation:
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where mis the electron (reduced) mass (not to be confused with the magnetic quantum
number!), 7 is Planck’s constant divided by 27, eis the electronic charge, ¢, is the
permittivity of free space, and nis an integer that is bigger than /7, i.e. / <n-1. This
last condition originates from the need to terminate the infinite series solution to obtain a
normalizable result for R(r) . Note than since ¢ =0,1,2,3,..., it must be that n =1,2,3,4,...
Hence the lowest energy state available to an electron and proton in a bound state is

E, =-13.6¢eV.

The Hydrogen atom Schrodinger equation solution has a characteristic size, called
the Bohr radius:
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The Bohr radius is about 0.5 Angstroms. A hydrogen atom never gets “smaller” than
about this size.
The solution for v(p) is:

Jmax

vip)=> a;p' = L35 (2p)
=0

where p = xr. This is the Associate Laguerre polynomial, Griffiths [4.88]. Itisa
polynomial of degree n—/¢-1.



The full solution of the time-independent Schrodinger equation for the H-atom is
found by multiplying the R(r) solution with the angular solution and properly normalizing
the entire wavefunction:
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There are three quantum numbers: n (principal), / (ang. mom.) and m (magnetic). They
have possible values given by:

n=1234,.

¢=012,.n-1

m=-/—¢+1,...0,.¢-17/

The hydrogen atom wavefunctions are orthonormal, Griffiths [4.90].
The ground state (n =1,/ =0,m = 0) wavefunction is a ‘fuzzy ball’, given by;
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