
Lecture 4 Highlights 
 
 The angular part of the Schrödinger equation: 
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can now be written as an eigenvalue equation: .  The 

eigenvalue of  is , and the eigenfunction is the ‘spherical harmonic’ 
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 One can find that the z-component of the angular momentum (vector) operator 

)( ∇−×=
r

h
rr

irL is given by: 
φ∂
∂

−= hiLz .  When applied to the spherical harmonics, it 

gives: .  Hence the spherical harmonics are also eigenfunctions 
of the  operator, with eigenvalue .  The spherical harmonics are simultaneous 
eigenfunctions of and . 
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 We discussed the statistical interpretation of 
2

),( φθmYl  and examined the case of 
(see Supplementary Material on the class web site). 2=l

 
 The radial equation has an infinite number of bound states (E<0) for any given 
value of l . 
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And the radial equation becomes: 
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After ‘peeling off’ the asymptotic behavior of this equation at large and small ρ , we try 
this (ansatz) substitution: 
  , )()( 1 ρρρ ρveu −+= l

where )(ρv is an unknown function that should capture the wiggling between small and 
large ρ .  The resulting equation for )(ρv is: 
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Try an infinite series solution around 0=ρ ; 
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This leads to a recursion relation for the coefficients : ja
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The recursion relation calculates the next value of given the previous value.  However 

this recursion relation leads to a non-normalizable solution for (~ ) unless the 
series terminates at some finite upper limit.  To terminate the series, one can make the 
numerator of the recursion relation equal to zero at some index value .  This 
requires that; 
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Now define .  Note that since 1max ++≡ ljn ,...3,2,1,0=l (from the solution to the 
θ equation) and (since these are the index values in the series solution), it 
must be that is an integer too, with the possible values 

,...3,2,1,0max =j
n ,...4,3,2,1=n  

 The above condition to terminate the infinite series now becomes: n20 =ρ .  
Using the definition of 0ρ and κ , we can solve for the only unknown, namely the eigen-
energy E , which now becomes quantized.  This forces a quantization condition on the 
total energy eigenvalue of the original Schrödinger equation: 
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where is the electron (reduced) mass (not to be confused with the magnetic quantum 
number!), is Planck’s constant divided by 

m
h π2 , is the electronic charge, e 0ε is the 

permittivity of free space, and n is an integer that is bigger than , i.e. .  This 
last condition originates from the need to terminate the infinite series solution to obtain a 
normalizable result for .  Note than since 

l 1−≤ nl

)(rR ,...3,2,1,0=l , it must be that   
Hence the lowest energy state available to an electron and proton in a bound state is 
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eVE 6.131 −=
The Hydrogen atom Schrödinger equation solution has a characteristic size, called 

the Bohr radius: 
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The Bohr radius is about 0.5 Angstroms.  A hydrogen atom never gets “smaller” than 
about this size. 
 The solution for )(ρv  is: 
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where rκρ ≡ .  This is the Associate Laguerre polynomial, Griffiths [4.88].  It is a 
polynomial of degree . 1−− ln
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 The full solution of the time-independent Schrödinger equation for the H-atom is 
found by multiplying the R(r) solution with the angular solution and properly normalizing 
the entire wavefunction: 
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There are three quantum numbers: n (principal), (ang. mom.) and m (magnetic).  They 
have possible values given by: 
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 The hydrogen atom wavefunctions are orthonormal, Griffiths [4.90]. 
The ground state ( 0,0,1 === mn l ) wavefunction is a ‘fuzzy ball’, given by; 
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