
Lecture 38 Highlights 
 

We now go back to one-dimensional quantum mechanics and investigate some 
very useful approximation schemes.  Note that the Schrödinger equation for the hydrogen 
atom reduces, in part, to a one-dimensional Schrödinger problem for the radial 
coordinate, so these approximation schemes can also work for certain 3D problems. 

First consider the approximation due to Wentzel, Kramers and Brillouin, known 
as the WKB approximation.  This approximation works in the “semi-classical limit” of 
quantum mechanics.  The lowest lying states of a quantum problem are said to be in the 
extreme quantum limit.  Look at the eigenfunctions for the 1D harmonic oscillator on the 
top of page 58 of Griffiths, for example.  The wave nature of the solution is crucial for 
understanding the properties of such states.  On the other hand we know that classical 
mechanics should be recovered if we consider solutions to the Schrödinger equation at 
very high quantum number.  In this limit the deBroglie wavelength of the particle is so 
small that it plays essentially no role in the dynamics of the particle or wave packet.  In 
between these two extremes we have the semi-classical limit, where both the wave nature 
and the high quantum number are of roughly equal significance.  The harmonic oscillator 
wavefunction shown on the bottom of page 58 of Griffiths is a good example of a semi-
classical wavefunction.  It has both quantum and classical character, as we shall see. 

The WKB approximation is basically good for two things: 1) estimating eigen-
energies in the semi-classical limit for complicated 1D potentials, and 2) estimating 
tunneling rates in the semi-classical limit through complicated barriers.  Here we look at 
eigen-energies in the 1D semi-classical limit. 

The lecture followed the book (Griffiths, pages 315-320) quite closely.  The basic 
idea is that in the semi-classical limit we can construct solutions to the 1D Schrödinger 
equation which are basically modulated traveling waves, in which the amplitude and 
phase vary on the scale of the variation of the potential: 
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where it is assumed that the wavelength of the particle )(/2 xkπ is much smaller than the 
length scale on which the potential is changing.  With this ansatz (which is exact), 
the Schrödinger equation reduces to two real equations for the two unknown functions; 
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where , etc., 22 /'' dxAdA = ( ))(2 xVEmpclass −= is the classical momentum of the 
particle, and it is assumed that the amplitude 0≠A .  The WKB approximation basically 
consists of ignoring the second derivative term in the first equation because the amplitude 
is expected to vary slowly if the above constraint on the length scale of variation of 

is satisfied.  With this, the solutions to the Schrödinger equation become; )(xV
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where is a constant and is a dummy coordinate variable.  Note that the probability 
density varies inversely with the classical momentum: 
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Hence the probability density should peak at the classical turning points (i.e. the points 
 where ).  This is indeed the case with the semi-classical wavefunction 

shown on the bottom of page 58 in Griffiths, and not the case for the extreme quantum 
wavefunctions on the top of page 58. 
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 As an example of computing eigen-energies, consider a 1D infinite square well 
with an arbitrary potential on the bottom, going from )(xV 0=x to ax = .  We can solve 
for the eigen-energies in the semi-classical limit where the wavelength of the particle is 
small compared to the spatial variation length scale of .  The solutions are of the 
form; 
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is a positive integer.  The value of n should start at the eigen-number that first enters 
the semi-classical limit, coming up the ladder of states from the quantum limit.  This 
value will depend on the problem, of course.   For a given potential on the bottom of 
the well, we now have a numerical problem to solve for the eigenenergies ( ) in the 

semiclassical limit: 
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 As a specific example, consider the flat infinite square well in which 
mEpclass 2= .  The integral is easy to do, and one gets the exact result for the 

eigenenergies of the infinite square well: 
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