
Lecture 33 Highlights 
 

Helium-4 is a Boson.  It has two protons and two neutrons in the nucleus, as well 
as two electrons orbiting the nucleus.  All of these particles are spin-1/2.  However they 
pair up into either spin singlet (S=0) or spin triplet (S=1) states, as discussed in section 
4.4.3 of Griffiths).  Thus it has integer spin.  Helium-4 is also a quantum fluid – it will 
not solidify at any temperature at a pressure of 1 atmosphere.  This can be understood 
qualitatively in terms of the position-momentum uncertainty relation, and the small mass 
of the He atom.  4He has many unusual macroscopic thermodynamic properties that are 
governed by quantum mechanics. 
 Some of these properties include (check out the video), 

1) The absence of boiling below the “lambda transition” at = 2.2 K, λT
2) Flow with zero viscosity through “superleaks”, 
3) Finite viscosity when measured by a rotating disk suspended by a torsional 

oscillator in the fluid, 
4) Superfluid film creep, 
5) Thermo-mechanical effects, including the fountain effect. 

 
Why is Helium-4 a superfluid?  We consider a large collection of 4He atoms in the 

liquid state inside a box of dimensions aaa ×× .  This is a ‘gas’ of many identical 
Bosons with overlapping wavefunctions.  We know the most likely occupation numbers 
for the states of such a system: 
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The problem now is to determine the states of the system “s”, the energy levels , 
the degeneracies of those levels , and finally the appropriate value of the chemical 
potential
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First we take a guess at the sign of the chemical potentialμ .  Let’s assume that the 
lowest energy state of the system is at energy 0, i.e. 01 =E .  Now suppose 0=μ as well.  
This leads to the following result for the most likely occupation number of the ground 

state: ∞→
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gn .  This does not make sense, since the total number of 4He 

particles in the box is fixed at .  Now supposeN 0>μ .  In this case the most likely 

occupation number for the ground state is 0
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.  In other words, the most 

likely occupation number for the ground state is negative, which does not make any 
sense.  Hence we are forced to conclude that 0<μ since only in this case do we get a 
non-negative and finite occupation number for the ground state of the system.  This is an 
important point that we will return to later. 

The next step is to enumerate all of the states available to the system, find their 
energies and degeneracies, and then enforce the fixed number constraint to determine the 
chemical potentialμ . 

 


