
Lecture 31 Highlights 
 

Quantum statistical mechanics, continued… 
We found the statistical weight W of the arrangement (n1, n2, n3, n4, …ns, …): 
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for three different types of statistics.  This weight is proportional to the probability of 
finding this particular distribution of occupation numbers.   
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2) Indistinguishable identical Fermions 
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 The next step is to maximize by varying all of the occupation 

numbers, subject to the number and total energy constraints:  and ∑ .  

We will include the constraints using the method of Lagrange multipliers.  This method 
allows one to perform a constrained maximization.  We will form a new function to 
maximize, namely; 
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To maximize this function we must enforce these conditions: 
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The form of G already satisfies the last two conditions. 
 Because of the products appearing in Eqs. (1)-(3), it is easier to maximize the 
logarithm of W.  This will yield the same result since W and lnW have maxima at the 
same values of their arguments.  The newly defined G for distinguishable particles now 
is: 
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 To take the derivative of G with respect to we must now decide what to do with 
the logarithm of .  One approach is to employ Stirling’s approximation: 

, good for .  With this approximation, G
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Taking the derivative of G with respect to some particular (called in the lecture) and 
setting it equal to zero (to find the maximum), yields; 
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 What are the Lagrange multipliers α and β ?  They are determined by the number 

and energy constraints ∑  and .  .  The challenge is to determine the 

energies and degeneracies of all of the single-particle states of the system - this is the 
hardest part of quantum statistical mechanics.  Calculating the total energy of an ideal 
gas, which is a relatively easy case, Griffiths (pp. 239-240) finds that
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TkB/1=β , where 
T is the absolute temperature of the gas.  The other parameter α is re-defined in terms of 
the chemical potential μ as μβα −≡ .  The chemical potential is a measure of how much 
energy is required to change the particle number of the system from to .  The 
three distribution functions can now be written as: 
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