Lecture 31 Highlights

Quantum statistical mechanics, continued...
We found the statistical weight W of the arrangement (n1, nz, N3, N4, ...Ng, ...):

W(n,,n,,..,n,..)= H P,
=1

for three different types of statistics. _This weight is proportional to the probability of
finding this particular distribution of occupation numbers.

1) Distinguishable classical particles Wy, (n,,n,,...,N,,...) = H & (1)
2) Indistinguishable identical Fermions
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3) Indistinguishable identical Bosons W, (n;,N,,..., N, H 3)
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The next step is to maximize W (n,,n,,.. ..) by varying all of the occupation
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numbers, subject to the number and total energy constraints: Zni =N and ZniEi =E.
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We will include the constraints using the method of Lagrange multipliers. This method

allows one to perform a constrained maximization. We will form a new function to

maximize, namely;

G(n,n,,...Ng,....a, B) :W(nl,nz,...,ns,...)+a[N —iniJ+ﬂ[E —iniEij
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To maximize this function we must enforce these conditions:
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The form of G already satisfies the last two conditions.

Because of the products appearing in Egs. (1)-(3), it is easier to maximize the
logarithm of W. This will yield the same result since W and InW have maxima at the
same values of their arguments. The newly defined G for distinguishable particles now
is:
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To take the derivative of G with respect to n,we must now decide what to do with
the logarithm of n_!. One approach is to employ Stirling’s approximation:
Inxl= xInx—x, good for x >>1. With this approximation, Gpjs becomes:



Gpy (N, Ny s N ey, B) = 10 N!+i(ns Ing, —n,Inn_ +n_)+ a[N —inij+,6’(E —iniEij
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Taking the derivative of G with respect to some particular n,(called n,in the lecture) and
setting it equal to zero (to find the maximum), yields;
n, = g.e“”’%) Distinguishable particles
For the other cases one gets
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What are the Lagrange multipliers e and #? They are determined by the number

and energy constraints Zni =N andZniEi = E. . The challenge is to determine the
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energies and degeneracies of all of the single-particle states of the system - this is the
hardest part of quantum statistical mechanics. Calculating the total energy of an ideal
gas, which is a relatively easy case, Griffiths (pp. 239-240) finds that # =1/k,T , where
T is the absolute temperature of the gas. The other parameter « is re-defined in terms of
the chemical potential xzasa =—uf . The chemical potential is a measure of how much
energy is required to change the particle number of the system from N toN +1. The
three distribution functions can now be written as:

n, = g.e =" Distinguishable particles

Ny =G %fk = Identical Fermions
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Ng=—c— >+ 9 Identical Bosons
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