
Lecture 30 Highlights 
 

First we will calculate the number of ways that ns particles can be distributed into 
state s of energy Es and degeneracy gs.  This will be called Ps.  Next we will calculate the 
total number of arrangements for an entire set of occupation numbers n1, n2, n3, n4, …ns, 
…  This will be the statistical weight W of the arrangement (n1, n2, n3, n4, …ns, …): 
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This weight will be proportional to the probability of finding this particular distribution 
of occupation numbers.   
 The next step is to maximize W by varying all of the occupation number values 
subject to the number and total energy constraints.  We will then do thermodynamics 
with the most probable microscopic configuration. 
 Consider 3 cases: 

1) Distinguishable classical particles 
2) Indistinguishable identical Fermions 
3) Indistinguishable identical Bosons 

 
Distinguishable classical particles:  This is something of a fiction in the sense that each 
particle has a unique identity and we can keep track of its location and energy with 
arbitrary precision.  Start with the ground state (i = 1, energy E1 with degeneracy g1).  
How many ways are there to put distinguishable particles in this energy level?  The 
answer is; 
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binomial coefficient arises because we can distinguish each particle and there are many 
distinct ways to choose a subset of all the particles , without regard to order.  The 
particles can each be put into any of possible states, hence the factor of . 
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 When constructing there is a similar factor, except that there are now only 

particles to start with.  Hence , and so on.  When we construct 

the relative statistical weight W, the result has a lot of cancellation: 
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Indistinguishable identical Fermions:  In this case we do not have the problem of 
choosing particles out of since they are all completely identical and there is no need 
to enumerate how such choices can be made – there is only one way.  Instead we are now 
concerned with enforcing the Pauli exclusion principle.  In this case it means that must 
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be less than or equal to , but never greater.  If is less than we have the freedom to 

distribute the particles many different ways.  In fact there are ways to put the 

particles into the available states.  Note that if = , this reduces to a factor of 1 
since there is only one way to distribute one of the identical particles to each available 
quantum state.  Similarly if there is only one way to accomplish that, so . 
Now the statistical weight is; 
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Indistinguishable identical Bosons:  From the treatment in Griffiths, one finds the result 
for the statistical weight is: 
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 The next step is to maximize by varying all of the occupation 

numbers, subject to the number and total energy constraints:  and ∑ .  

We will include the constraints using the method of Lagrange multipliers.  This method 
allows one to perform a constrained maximization.  We will form a new function to 
maximize, namely; 
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To maximize this function we must enforce these conditions: 
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The form of G already satisfies the last two conditions. 
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