Lecture 30 Highlights

First we will calculate the number of ways that n_s particles can be distributed into state s of energy E_s and degeneracy g_s . This will be called P_s . Next we will calculate the total number of arrangements for an entire set of occupation numbers n_1 , n_2 , n_3 , n_4 , ... n_s , ... This will be the statistical weight W of the arrangement $(n_1, n_2, n_3, n_4, ... n_s, ...)$:

$$W(n_1, n_2, ..., n_s, ...) = \prod_{s=1}^{\infty} P_s$$

This weight will be proportional to the probability of finding this particular distribution of occupation numbers.

The next step is to maximize *W* by varying all of the occupation number values subject to the number and total energy constraints. We will then do thermodynamics with the most probable microscopic configuration.

Consider 3 cases:

- 1) Distinguishable classical particles
- 2) Indistinguishable identical Fermions
- 3) Indistinguishable identical Bosons

Distinguishable classical particles: This is something of a fiction in the sense that each particle has a unique identity and we can keep track of its location and energy with arbitrary precision. Start with the ground state (i = 1, energy E_I with degeneracy g_I). How many ways are there to put n_1 distinguishable particles in this energy level? The answer is:

$$P_1 = \binom{N}{n_1} g_1^{n_1}$$
, where the binomial coefficient is $\binom{N}{n_1} = \frac{N!}{n_1!(N-n_1)!}$. The

binomial coefficient arises because we can distinguish each particle and there are many distinct ways to choose a subset n_1 of all the particles N, without regard to order. The particles can each be put into any of g_1 possible states, hence the factor of $g_1^{n_1}$.

When constructing P_2 there is a similar factor, except that there are now only

$$N - n_1$$
 particles to start with. Hence $P_2 = \binom{N - n_1}{n_2} g_2^{n_2}$, and so on. When we construct

the relative statistical weight W, the result has a lot of cancellation:

$$W_{Dist}(n_{1}, n_{2}, ..., n_{s}, ...) = \frac{N! g_{1}^{n_{1}}}{n_{1}! (N - n_{1})!} \times \frac{(N - n_{1})! g_{2}^{n_{2}}}{n_{2}! (N - n_{1} - n_{2})!} \times \frac{(N - n_{1} - n_{2})! g_{3}^{n_{3}}}{n_{3}! (N - n_{1} - n_{2} - n_{3})!} \times ...$$

$$W_{Dist}(n_{1}, n_{2}, ..., n_{s}, ...) = N! \prod_{s=1}^{\infty} \frac{g_{s}^{n_{s}}}{n_{s}!}$$

Indistinguishable identical Fermions: In this case we do not have the problem of choosing n_1 particles out of N since they are all completely identical and there is no need to enumerate how such choices can be made – there is only one way. Instead we are now concerned with enforcing the Pauli exclusion principle. In this case it means that n_s must

be less than or equal to g_s , but never greater. If n_s is less than g_s we have the freedom to distribute the particles many different ways. In fact there are $\begin{pmatrix} g_s \\ n_s \end{pmatrix}$ ways to put the

 n_s particles into the g_s available states. Note that if $n_s = g_s$, this reduces to a factor of 1 since there is only one way to distribute one of the identical particles to each available quantum state. Similarly if $n_s = 0$ there is only one way to accomplish that, so $P_s = 1$. Now the statistical weight is;

$$W_{Fermions}(n_1, n_2, ..., n_s, ...) = \prod_{s=1}^{\infty} \frac{g_s!}{n_s!(g_s - n_s)!}$$

Indistinguishable identical Bosons: From the treatment in Griffiths, one finds the result for the statistical weight is:

$$W_{Bosons}(n_1, n_2, ..., n_s, ...) = \prod_{s=1}^{\infty} \frac{(n_s + g_s - 1)!}{n_s!(g_s - 1)!}$$

The next step is to maximize $W(n_1, n_2, ..., n_s, ...)$ by varying all of the occupation numbers, subject to the number and total energy constraints: $\sum_{i=1}^{\infty} n_i = N$ and $\sum_{i=1}^{\infty} n_i E_i = E$.

We will include the constraints using the method of Lagrange multipliers. This method allows one to perform a constrained maximization. We will form a new function to maximize, namely;

$$G(n_1, n_2, ..., n_s, ..., \alpha, \beta) = W(n_1, n_2, ..., n_s, ...) + \alpha \left(N - \sum_{i=1}^{\infty} n_i\right) + \beta \left(E - \sum_{i=1}^{\infty} n_i E_i\right)$$

To maximize this function we must enforce these conditions:

$$\frac{\partial G}{\partial n_s} = 0 \ \forall s \ \text{and} \ \frac{\partial G}{\partial \alpha} = \frac{\partial G}{\partial \beta} = 0.$$

The form of G already satisfies the last two conditions.