Lecture 3 Summary

Classically the electron Kinetic Energy can be written as $T = \frac{p_{rad}^2}{2m} + \frac{p_\perp^2}{2m}$, where p_{rad} is the radial component and p_\perp is the perpendicular to \vec{r} component of momentum. The total kinetic energy is made up of a radial part and a rotational part. This becomes an operator in quantum mechanics: $T = \frac{p_{rad}^2}{2m} + \frac{L^2}{2mr^2}$. Comparing to the Schrödinger equation separated into radial and angular pieces we see that the angular momentum squared operator is: $L^2 = \frac{-\hbar^2}{\sin\theta} \frac{\partial}{\partial\theta} \left(\sin\theta \frac{\partial}{\partial\theta}\right) - \frac{-\hbar^2}{\sin\theta} \frac{\partial^2}{\partial\phi^2}$. The angular equation part of the Schrödinger equation for the Hydrogen atom can be written as an eigenvalue problem: $L^2Y = \hbar^2\alpha Y$, with eigenvalue $\hbar^2\alpha$ and eigenfunction Y.

The angular equation, after introducing the separation constant α , becomes: $\sin\theta \frac{\partial}{\partial\theta} \left(\sin\theta \frac{\partial Y(\theta,\phi)}{\partial\theta}\right) + \frac{\partial^2 Y(\theta,\phi)}{\partial\phi^2} = -\alpha\sin^2\theta \ Y(\theta,\phi). \text{ Now separate variables again using } Y(\theta,\phi) = \Theta(\theta)\Phi(\phi) \text{ and a separation constant } m^2. \text{ This yields two } 2^{\text{nd}}\text{-order linear ordinary differential equations:}$

$$\sin\theta \frac{d}{d\theta} \left(\sin\theta \frac{d\Theta(\theta)}{d\theta} \right) + \ell(\ell+1)\sin^2\theta \ \Theta(\theta) = m^2\Theta(\theta)$$
And
$$\frac{d^2\Phi(\phi)}{d\phi^2} = -m^2\Phi(\phi)$$

The latter equation has solutions of the form $\Phi(\phi) = e^{im\phi}$, where m is equal to zero or a positive or negative integer. The correct argument to show that m can take on only positive or negative integers, or zero, will come later when we study the angular momentum ladder operators.

The Θ equation is simplified with the change of variables $x = \cos \theta$ and $y(x) = \Theta(\theta)$ to yield the associated Legendre differential equation:

$$(1 - x^2) \frac{d^2 y}{dx^2} - 2x \frac{dy}{dx} + \left[\alpha - \frac{m^2}{1 - x^2} \right] y = 0$$

From a series solution ansatz one finds that the infinite series must be terminated to keep the solution finite at $x = \pm 1$ ($\theta = 0, \pi$). The resulting general solution is the associated Legendre function $P_{\ell}^{m}(x)$. However to recover this finite solution it is required that $\alpha = \ell(\ell+1)$, where ℓ is either zero or a positive integer. One finds from inspection of the associated Legendre function that is zero unless $\ell \ge |m|$. Another solution to this equation is discarded because it diverges at $x = \pm 1$ ($\theta = 0, \pi$) no matter what is done (see Griffiths [4.4]).

The final result for the original angular partial differential equation is the 'spherical harmonic':

$$Y_{\ell}^{m}(\theta,\phi) = \varepsilon \sqrt{\frac{2\ell+1}{4\pi} \frac{(\ell-|m|)!}{(\ell+|m|)!}} e^{im\phi} P_{\ell}^{m}(\cos\theta), \text{ where } \varepsilon = \begin{cases} (-1)^{m} & m \geq 0\\ 1 & m \leq 0 \end{cases},$$

where $\ell = 0,1,2,3,...$ and $\ell \ge |m|$. The spherical harmonics are orthonormal in angle-space:

$$\int_{0}^{2\pi} d\phi \int_{0}^{\pi} d\theta \sin\theta Y_{\ell}^{m^*}(\theta,\phi) Y_{\ell'}^{m'}(\theta,\phi) = \delta_{\ell\ell'} \delta_{mm'}$$

In other words, the inner product of these two functions on the unit sphere is either zero (if either of the two indices ℓ , ℓ ' or m, m' is different), or equal to 1 when they are the same ($\ell = \ell$ ' and m = m').