Lecture 18 Highlights

We continued to discuss the unperturbed eigenenergies and eigenfunctions of the
Helium atom. Note that the anti-symmetric space wavefunction:
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has a peculiar property. If both particles are in the same single-particle state (lists of
quantum numbers a = b ), then the wavefunction is zero. This remarkable property is
shared by much more sophisticated multi-identical-particle Fermionic wavefunctions and
is called the Pauli Exclusion Principle. It says that no two Fermions in a multi-identical-
particle composite Fermion (overall anti-symmetric) wavefunction can occupy the same
exact single-particle quantum state.

This principle now constrains the types of He atom wavefunctions we can write
down. They can only be of the form:
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where  represents the space-part of the wavefunction and y represents the spin part of

the wavefunction (here it is assumed that the He-atom wavefunction can be factorized
like this). A symmetric space wavefunction that respects indistinguishability can be
written in this way, for example:
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But what about symmetric and anti-symmetric spin wavefunctions y ? It turns out that
we already have them, at least for the combination of two spin-1/2 particles. The spin
triplet states (|11),|10),|1-1)) are symmetric under permutation (also called exchange) of
the two particles, while the spin singlet state (|00>) is antisymmetric. Fantastic!

We now have 4 candidate He atom wavefunctions:
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We then took a detour into 1D infinite square wells again to discuss the
correlations built in to multi-particle states by the anti-symmetry constraint. Consider a



1D infinite square well between x = 0 and x = a. Put two non-interacting but identical
particles into the well, and ignore the spin part of the wavefunction for now. Suppose
they are identical Fermions. Both particles cannot occupy the (n=1) ground state of the
well, due to the Pauli exclusion principle. One can write down two possible ground state
wavefunctions as follows. The first is anti-symmetric in space and puts one particle in
the n=1 ground state and the other in the n=2 first excited state. Notice that it does this in
a way that respects the indistinguishability of the two particles:
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where X, refers to the x-coordinate of particle 1, and x, to that of particle 2. The second
wavefunction is symmetric in space, and also puts the particles into different states:
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Both of these wavefunctions have the same un-perturbed energy of E; = E;, =
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2ma?
From the plots of v, (., X,)and w5 (x,,X,) posted on the web site, one can see

that the probability of finding the particles at the same location X, = X, is significantly

higher in the symmetric vs. the antisymmetric wavefunctions. This means that when a
repulsive perturbing potential is turned on (like a Coulomb potential), it will leave the
anti-symmetric space wavefunction at a lower energy than the symmetric space
wavefunction. This energy difference is called the “exchange energy” or “exchange
splitting.”




