
Lecture 18 Highlights 
 
 We continued to discuss the unperturbed eigenenergies and eigenfunctions of the 
Helium atom.  Note that the anti-symmetric space wavefunction: 
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has a peculiar property.  If both particles are in the same single-particle state (lists of 
quantum numbers ), then the wavefunction is zero.  This remarkable property is 
shared by much more sophisticated multi-identical-particle Fermionic wavefunctions and 
is called the Pauli Exclusion Principle.  It says that no two Fermions in a multi-identical-
particle composite Fermion (overall anti-symmetric) wavefunction can occupy the same 
exact single-particle quantum state. 
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 This principle now constrains the types of He atom wavefunctions we can write 
down.  They can only be of the form: 
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or  
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where ψ represents the space-part of the wavefunction and χ represents the spin part of 
the wavefunction (here it is assumed that the He-atom wavefunction can be factorized 
like this).  A symmetric space wavefunction that respects indistinguishability can be 
written in this way, for example: 
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But what about symmetric and anti-symmetric spin wavefunctions χ ?  It turns out that 
we already have them, at least for the combination of two spin-1/2 particles.  The spin 
triplet states ( 11,10,11 − ) are symmetric under permutation (also called exchange) of 

the two particles, while the spin singlet state ( 00 ) is antisymmetric.  Fantastic! 
 We now have 4 candidate He atom wavefunctions: 
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 We then took a detour into 1D infinite square wells again to discuss the 
correlations built in to multi-particle states by the anti-symmetry constraint.  Consider a 
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1D infinite square well between x = 0 and x = a.  Put two non-interacting but identical 
particles into the well, and ignore the spin part of the wavefunction for now.  Suppose 
they are identical Fermions.  Both particles cannot occupy the (n=1) ground state of the 
well, due to the Pauli exclusion principle.  One can write down two possible ground state 
wavefunctions as follows.  The first is anti-symmetric in space and puts one particle in 
the n=1 ground state and the other in the n=2 first excited state.  Notice that it does this in 
a way that respects the indistinguishability of the two particles: 
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where refers to the x-coordinate of particle 1, and  to that of particle 2.  The second 
wavefunction is symmetric in space, and also puts the particles into different states: 
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Both of these wavefunctions have the same un-perturbed energy of 2
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 From the plots of ),( 2112 xxSψ and ),( 2112 xxAψ posted on the web site, one can see 
that the probability of finding the particles at the same location 21 xx = is significantly 
higher in the symmetric vs. the antisymmetric wavefunctions.  This means that when a 
repulsive perturbing potential is turned on (like a Coulomb potential), it will leave the 
anti-symmetric space wavefunction at a lower energy than the symmetric space 
wavefunction.  This energy difference is called the “exchange energy” or “exchange 
splitting.” 
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