
Lecture 14 Highlights 
 

We considered the hyperfine interaction between the magnetic moment of the 
proton and that of the electron in the hydrogen atom. 

The proton has a magnetic moment due to the intrinsic spin, orbital motion of its 
quark constituents, and the quark-gluon plasma.  It is given by: 
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where , e is the electronic charge, is the mass of the proton, and is its spin 
angular momentum.  Note that the proton is a spin-1/2 particle, just like an electron.  Its 
spin angular momentum lives on a 2-state ladder, with steps separated byh , just like the 
electron.  In the hydrogen atom the magnetic field generated by the proton’s magnetic 
moment interacts with the magnetic moment of the electron to give rise to the hyperfine 
perturbing Hamiltonian: 
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where the magnetic field due to the proton’s dipole moment is given by Griffiths E+M 
book, Eq. 5.90: 
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The last term comes from the infinitesimal dipole at the proton location.  This expression 
assumes that the proton is at the origin and is oriented in space in the direction of pμr , 
and calculates the vector magnetic field at location rr .  
 Evaluating the first order correction to the energy of the hydrogen atom yields: 
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where 0

nψ is the un-perturbed hydrogen atom wavefunction and “ ” in the wavefunction 
subscript represents a list of quantum numbers. 
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 If we specialize to the case of zero orbital angular momentum, , for the un-
perturbed states, the first term above is zero (see problem 6.27).  The second term 
simplifies because of the delta function, and we have: 
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where now represents the principal quantum number in the hydrogen atom.  One finds 

from Eq. (4.89) that
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ψ = , where is the Bohr radius.  To evaluate a
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to evaluate the spin-orbit perturbation.  Note that 0=L
r

here by assumption.  This yields 
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Note that the electron and proton are both spin-1/2 particles and so 4/3 222 h== pe SS , 
and  
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We treated the total spin of two spin-1/2 particles in the last lecture (Lecture 13) and 
found that two ladders of states are possible, that of 1=s (the 3-state Triplet with 

22 2h=S ) and 0=s (the 1-state Singlet with 22 0h=S ).  This yields two possible 
values for the first-order corrected energy: 
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 Consider the case of , which is the ground state of Hydrogen (1s).  This state 
is now split into two hyperfine-split states as shown in the diagram. 
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The energy splitting is only about 6 μeV, compared to the ground state binding energy of 
13.6 eV.  The upper state has a lifetime of about 1015 seconds, or about 108 years.  When 
the atom makes a transition from the triplet state to the singlet state, it gives off radiation 
of frequency 1.420 GHz, with a wavelength of about 21 cm.  This radiation can propagate 
through clouds of dust in the galaxy.  From measurements of the Doppler shift of this 
radiation, the spiral structure of our galaxy was deduced.  This transition photon was also 
used as the standard of length and time in the “post card” attached to the Pioneer 10 
spacecraft. 
 Note that the picture of the orientation of the Nuclear spin and Electron spin in the 
above figure is somewhat deceiving.  The actual states are described by the triplet and 
singlet spin wavefunctions (lecture 13), and can not be understood in terms of the “un-
coupled” representation illustrated with the black and red arrows. 
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