
Lecture 11 Highlights 
 

We considered the spin-orbit interaction in Hydrogen.  The objective is to 
calculate the “fine-structure” energy splitting due to the spin-orbit effect.  The magnetic 
moment of the electron interacts with the magnetic field created by the proton to produce 
a small energy difference between the L

r
 parallel to S

r
 and L

r
 anti-parallel to S

r
 

situations for the atom.  This difference is due to “spin-orbit coupling.” 
As discussed in Griffiths page 271 the magnetic field experienced by the electron 

is given (classically) by: 
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where e  is the electronic charge, is the electron mass, c is the speed of light in vacuum, 
and 

m
r is the proton-electron distance.  Note that the magnetic field is parallel to the 

electron orbital angular momentum vector.  To see why, consider things from the 
proton’s rest frame as the electron moves with velocity vr through the static electric field 
E
r

produced by the proton.  It will experience an effective magnetic field given by 

E
c
vB

rrr
×−=  (from relativity).  By comparing the direction of this field with the direction 

of the angular momentum of the electron in its orbit about the proton, this argument 
shows that B

r
is parallel to L

r
. 

 The magnetic moment of charged “spinning” particles is given by: 
  , S

rr γμ =
where γ is called the gyromagnetic ratio.  It relates the gyration (or rotation) of the 
particle (as embodied in S

r
) to the magnetic moment developed (μr ).  A moving charge 

creates a magnetic field.  A charge moving in a “small” current loop can be treated as a 
magnetic moment, or magnetic dipole, at least for distances large compared to the 
diameter of the current loop.  For the electron the gyromagnetic ratio is found to be 

e
e m

e
−=γ to very good approximation.  See Griffiths page 272 for a “derivation” of this 

result.  For heavier particles like the proton the gyromagnetic ratio is much smaller due to 
the larger mass in the denominator and the fact that angular momentum is quantized and 
of order h for all particles.  This fact allows us to ignore the interaction of the proton’s 
magnetic moment with the magnetic field created by the electron, at least for now. 
 The electron’s magnetic moment experiences a torque due to its motion around 
the proton.  There is a perturbing interaction energy given by; 
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which becomes; 
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This new operator LS
rr

• has some interesting properties.  It commutes with and 
, but does not commute with 

2L
2S S

r
or L

r
 (Homework 4).  This means that S

r
and L

r
 are no 

 1



longer “constants of the motion” under the perturbed Hamiltonian  (this follows 

from Griffiths [3.71] with 
soΗ+Η 0

LQ
r

=  or S
r

).  This means that l and are still “good quantum 
numbers”, but  and are not.  The perturbation mixes together states with different 
values of  and . 
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Note that the proton exerts a torque on the electron spin.  This means that the 

force of interaction between the two particles is non-central, although this effect is a 
“small perturbation.”  This means that S

r
will precess in its motion about the proton.  As a 

consequence L
r

 will also precess, since the net external torque on the atom is zero, and 
the total angular momentum of the atom, SLJ

rrr
+= , must remain fixed. 

This new total angular momentum operator J
r

has properties analogous to 
S
r

and L
r

.  It has a ladder of states symmetric about zero.  The ladder has a top rung and a 
bottom rung.  There is a operator with eigenvalues , and a operator with 
eigenvalues .  There are raising and lowering operators

2J 2)1+( hjj zJ
hjm yx iJJJ ±=± , and 

commutators such as [ ] zyx JiJJ h=, . 

One nice feature of J
r

is the fact that it is a “constant of the motion” for the 
perturbed Hamiltonian .  Hence although we loose  and as good quantum 
numbers, we gain 
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