Lecture 10 Highlights

We started with the second order corrections to the perturbed Schrödinger equation:

$$H\psi_n = E_n \psi_n \,, \tag{1}$$

solved assuming:

$$\psi_n = \psi_n^0 + \lambda \psi_n^1 + \lambda^2 \psi_n^2 + \dots$$
 (2)

$$E_n = E_n^0 + \lambda E_n^1 + \lambda^2 E_n^2 + \dots$$
 (3)

and yielding (to second order):

$$\lambda^{2}: H^{0}\psi_{n}^{2} + H'\psi_{n}^{1} = E_{n}^{0}\psi_{n}^{2} + E_{n}^{1}\psi_{n}^{1} + E_{n}^{2}\psi_{n}^{0}$$

$$\tag{4}$$

The second-order equation can be solved using the fact that ψ_n^1 and ψ_n^2 can each be expressed as a linear combination of all the eigenfunctions of H⁰ (a postulate of QM) as,

$$\psi_{n}^{1} = \sum_{k \neq n} a_{nk} \; \psi_{k}^{0} \qquad \qquad \psi_{n}^{2} = \sum_{\ell} b_{n\ell} \; \psi_{\ell}^{0} \tag{5}$$

where the a_{nk} are known from the solution of the first-order equation in the last lecture, but the $b_{n\ell}$ are unknown at this point. Putting (5) into (4) and exploiting orthonormality (i.e. multiply both sides by ψ_j^{0*} and integrating over all space) yields (for the case j = n):

$$E_n^2 = \sum_{k \neq n} \frac{\left| \int \psi_k^{0*} \, \mathbf{H}' \, \psi_n^0 \, d^3 r \right|^2}{E_n^0 - E_k^0} \tag{6}$$

This represents the second order correction to the energy. It is often necessary to calculate this because the first-order energy correction is sometimes zero. This result again assumes that the energy eigenvalues are non-degenerate.

As an example of first-order perturbation theory we considered the relativistic correction to the kinetic energy operator. Following the discussion in Griffiths pages 267-270 we found a relativistic correction to the kinetic energy operator as:

$$T = \frac{p^2}{2m} - \frac{p^4}{8m^3c^2}$$

The new Schrödinger equation for the Hydrogen atom can now be written as:

$$H\psi = E\psi$$
,

with $H = H^0 + H'$, and $H^0 = \frac{p^2}{2m} - \frac{e^2}{4\pi\epsilon_0 r}$ is the original un-perturbed Hydrogen atom

Hamiltonian, and H'= $-\frac{p^4}{8m^3c^2}$ is the perturbation. We evaluate the change in energy to

first order using the result derived in the last lecture:

$$E_n^1 = \iiint \psi_n^{0*} H' \psi_n^0 d^3 r$$
,

where ψ_n^0 are the unperturbed Hydrogen atom wavefunctions, and n now represents the list of H-atom quantum numbers n, ℓ, m . Evaluating the expectation value integral as in Griffiths yields the following result:

$$E_{n,\ell}^{1} = -E_{n}^{0} \frac{\alpha^{2}}{2n^{2}} \left[\frac{4n}{\ell + \frac{1}{2}} - 3 \right]$$

where the subscripts are now the principle quantum number n and angular momentum quantum number ℓ of the Hydrogen atom, and $E_n^0 = -13.6\,\mathrm{eV}/n^2$. We have also introduced a new and very important dimension-less parameter called the fine structure constant α . This is a combination of fundamental constants from electrodynamics, quantum mechanics and relativity:

$$\alpha \equiv \frac{e^2}{4\pi\varepsilon_0\hbar c} \cong \frac{1}{137.036}.$$

Note that the correction to the energy of the Hydrogen atom due to relativistic effects is on the scale of $\alpha^2 E_n^0$, which is roughly on the order of $10^{-3}\,\mathrm{eV}$, as compared to the ground state energy of order $10\,\mathrm{eV}$. Also note that the ℓ dependence of the first-order corrected energy will lift some of the degeneracies of the un-perturbed hydrogen atom, and this will give rise to "fine structure" in the radiation emission spectrum of the atom. In other words some of the H-atom spectral lines will now be split into multiple lines (because of the ℓ dependence of $E_{n,\ell}^1$) with an energy splitting on order $10^{-3}\,\mathrm{eV}$. Such effects are visible in a spectrometer as "fine structure splitting" of the spectral lines.