Lecture 10 Highlights

We started with the second order corrections to the perturbed Schrodinger
equation:

Hy, =Ey,, (1)
solved assuming:

Vo =Wo + 200 + W0 + ... ()

E,=E)+AE, + E} +... (3)
and yielding (to second order):

A Hy, +H'y, =Ejy, + By, +Eny, 4)

The second-order equation can be solved using the fact that v and w’ can each be

expressed as a linear combination of all the eigenfunctions of H° (a postulate of QM) as,
W=D 8w Vi o =20, v (5)
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where the a, are known from the solution of the first-order equation in the last lecture,
but the b, are unknown at this point. Putting (5) into (4) and exploiting orthonormality
(i.e. multiply both sides by z//?* and integrating over all space) yields (for the case j =n):
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This represents the second order correction to the energy. It is often necessary to
calculate this because the first-order energy correction is sometimes zero. This result
again assumes that the energy eigenvalues are non-degenerate.

As an example of first-order perturbation theory we considered the relativistic
correction to the kinetic energy operator. Following the discussion in Griffiths pages

267-270 we found a relativistic correction to the kinetic energy operator as:
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The new Schrddinger equation for the Hydrogen atom can now be written as:
Hy =Ey,
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with H=H° +H', and H’ = P is the original un-perturbed Hydrogen atom
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Hamiltonian, and H'=— is the perturbation. We evaluate the change in energy to
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first order using the result derived in the last lecture:
Er=[[[wy Hyd'r,
where y” are the unperturbed Hydrogen atom wavefunctions, and n now represents the

list of H-atom quantum numbers n,/,m. Evaluating the expectation value integral as in
Griffiths yields the following result:
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where the subscripts are now the principle quantum number n and angular momentum
guantum number ¢ of the Hydrogen atom, and E’ =-13.6eV/n*. We have also
introduced a new and very important dimension-less parameter called the fine structure
constant « . This is a combination of fundamental constants from electrodynamics,
quantum mechanics and relativity:
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Note that the correction to the energy of the Hydrogen atom due to relativistic
effects is on the scale of «’E?, which is roughly on the order of 10°eV, as compared to
the ground state energy of order 10 eV. Also note that the ¢ dependence of the first-order
corrected energy will lift some of the degeneracies of the un-perturbed hydrogen atom,
and this will give rise to “fine structure” in the radiation emission spectrum of the atom.
In other words some of the H-atom spectral lines will now be split into multiple lines

(because of the ¢ dependence of E, ,) with an energy splitting on order 10°eV. Such
effects are visible in a spectrometer as “fine structure splitting” of the spectral lines.
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