QUANTUM PHYSICS I $PROBLEM\ SET\ 5$ $due\ November\ 10^{th}\ before\ class$

A. Muonic hydrogen

A muon is a particle identical to an electron except its mass is about 200 times larger. A muonic hydrogen is a bound state of a proton to a muon (instead of a proton and an electron as in the usual hydrogen).

- i) Use Bohr's theory to calculate the energy levels of the muonic hydrogen. What is the energy of the ground state (in eV)?
 - ii) Is the muon non-relativistic in the ground state of the muonic hydrogen?
- iii) What is the wavelength of a photon emitted in a transition between the first excited state and the ground state? Which kind of photon is it (radio, microwave, visible, ultraviolet, X-ray, γ -ray, ...)?
- iv) Besides the mass, muons differ from electron by the fact that they "decay" into an electron and two massless, chargeless particles called "neutrinos". The lifetime for the decay is about $2 \times 10^{-6} s$. Does the muon have the time to orbit the proton several times before decaying when it is in the ground state of muonic hydrogen?

B. Operator wizardry

- i) Show that the operator $\hat{p} = -i\hbar d/dx$ is an hermitian operator.
- ii) Compute

$$e^{-i\frac{y}{\hbar}\hat{p}}f(x). \tag{1}$$

Hint: expand the exponential and remember the Taylor series expression.

iii) Show that $\Psi(x,t) = e^{-i\hat{H}t/\hbar}\Psi(x,0)$ satisfies the Schrödinger equation. It is said that \hat{p} generates space translations (from item ii) and \hat{H} generates time translations (by item iii).