QUANTUM PHYSICS I PROBLEM SET 5 due November 16th, before class

EXPECTATION VALUES ON HARMONIC OSCILLATOR STATIONARY STATES

Calculate the expectation values of x, p, x^2 and p^2 on the nth stationary state of the harmonic oscillator. Verify that the uncertainty principle is obeyed in each of them. Which state minimizes $\Delta x^2 \Delta p^2$?

COHERENT STATES

A coherent state of a harmonic oscillator is defined by

$$a_{-}|\lambda\rangle = \lambda|\lambda\rangle,$$
 (1)

where λ is a complex number.

- 1. Prove that $[A, B^2] = [A, B]B + B[A, B]$ for any operators A and B.
- 2. Prove that $[a_-, a_+^n] = na_+^{n-1}$
- 3. By using the expansion $e^{\lambda a_+} = 1 + \lambda a_+ + \frac{1}{2}\lambda^2 a_+^2 + \cdots$, show that

$$|\lambda\rangle = Ae^{\lambda a_+}|0\rangle. \tag{2}$$

- 4. Show that $A = e^{-|\lambda|^2/2}$ for a properly normalized coherent state.
- 5. Write $|\lambda\rangle$ as

$$|\lambda\rangle = \sum_{n=0}^{\infty} c_n |n\rangle. \tag{3}$$

Find c_n .

Hint: if you are having trouble with bras and ket, just substitute $|n\rangle \to \psi_n$ everywhere.