QUANTUM PHYSICS I PROBLEM SET 4 due October 24rd, before class

Static wave-packet

At some instant a particle has the wave function

$$\psi(x) = Ae^{-\alpha x^2}. (1)$$

- 1. Normalize $\psi(x)$ and find $\langle x \rangle$ and $\langle p \rangle$ (you've already done it last week).
- 2. Plot the probability density for the particle to be at x as a function of x.
- 3. Calculate and plot the probability density for the particle to have momentum p as a function of p.

Moving wave-packet

At some instant a particle has the wave function

$$\psi(x) = Ae^{-\alpha x^2 - ikx}. (2)$$

- 1. Normalize $\psi(x)$ and find $\langle x \rangle$ and $\langle p \rangle$.
- 2. Plot the probability density for the particle to be at x as a function of x.
- 3. Calculate and plot the probability density for the particle to have momentum p as a function of p.

Schrödinger equation in momentum space

The Schrödinger equation for a free particle is

$$i\hbar \frac{\partial}{\partial t} \Psi(x,t) = -\frac{\hbar^2}{2M} \frac{\partial^2}{\partial x^2} \Psi(x,t). \tag{3}$$

1. Find the equation that the Fourier transform c(p,t) of $\Psi(x,t)$ defined by

$$c(p,t) = \int_{-\infty}^{\infty} dx \frac{e^{ipx/\hbar}}{\sqrt{2\pi\hbar}} \Psi(x,t)$$
 (4)

satisfies. (Hint: apply $\int_{-\infty}^{\infty} e^{ipx/\hbar \cdots}$ to both sides of the Schrödinger equation).

- 2. Solve this equation (assume that the intial condition c(p,0) is given). Does the momentum distribution change with time?
- 3. Generalize the result above for a particle under the influence of a potential V(x) (you should write your answer in terms of the Fourier transform $\tilde{V}(p) = \int_{-\infty}^{\infty} dx e^{ikx} V(x)$ of the potential). You will find a complicated integral equation instead of the algebraic equation found in the free case.