PHYS401 Quantum Physics | - Exam 2

No books, calculators, or notes Name:

1. (2 pts each) Using only eV, cm, and s, what are the units of:

a. Massm

Eome® = E‘“ﬂ eV s"

b. Wavenumber k
K
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c. Quantum number n

Se lubons

Spring 2012
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d. Reduced Planck constant h

Thew = E’KPJ:eV\_g

e. Potential V(x)
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f.  Wavefunction W(x, t) [hint: consider normalization condition]
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2. An electron is in an equal superposition of the two lowest eigenstates of the simple harmonic
oscillator potential V(x) = Emwzxz. We can therefore write the initial wavefunction as

W(x,0) = Ao + 1], where 1, is the n™ normalized solution to the time-independent
Schrodinger equation.
a. (1 pt) Determine the value ofA
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b. (2 pts) What is the expectation value of energy <E>?
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c. (2 pts) Write down the wavefunction W(x, t) for all t>0.
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d. (2 pt) What is the probability density for this wavefunction for all t>0?
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e. (2 pts) Write an expression for <x> for all t>0 in terms of i, and ;. Is this
wavefunction a “stationary state”?
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%kxz,x> 0

3. Consider an electron with mass m in the potential V(x) = {
00,x <0

a. (1 pt) Draw the potential energy vs. x.
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b. (1 pt) What is the boundary condition on the wavefunction at x=0?

\'}j()(:oj F)=0

c. (2 pts) In terms of k, m, and h, find the ground-state energy of the electron in this
potential. [hint: what wavefunction solutions to the harmonic oscillator satisfy the
boundary conditions?]
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d. (2 pts) Draw the probability density vs. x for this state superimposed on the potential.
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4. Consider an electron of mass m in a 1-d infinite square potential V(x) = {

0,0<x<a
oo, otherwise’
a. (2 pts) Write down the time-independent Schrodinger equation for O<x<a, and

determine the general solution.
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b. (3 pts) What are the boundary conditions at x=0 and x=a? Apply them to the general
solution to obtain the eigenstates and eigenenergies.
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C. (%J:)ts) Normalize the eigenstates.
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d. (1 pt) Suppose the electron is in the lowest-energy normalized eigenstate (“ground
state”), when suddenly the well doubles in size so that V(x)=0 for O<x<2a. What is the
new ground state eigenfunction?
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e. (4 pts) What is the probability of now finding the electron in the new ground state of the
wider well? [hint: sin(u)sin(v)=1/2(cos(u- v) cos(u+v)
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5. A potential similar to the 1D infinite quantum well [with V(x)=0 for —a<x<a] has an attractive
delta function potential in the center: —36(x).

a. (2 pts) What are the units of B, and why?
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b. (3 pts) By integrating the time-independent Schrodinger equation across x=0, derive the
boundary condition on the first derivative of the wavefunction there.
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c. (2 pts) Find the general solution to the Schrodinger equation for the bound state with
E<O0 for the two regions —a<x<0 and O<x<a.
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d. (2 pts) Without solving the boundary condition equations, draw the probability density
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of this E<O0 state, superimposed on the potential if E~ — 5 h

— 3 Label axes etc.
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e. (1 pt) What is the expectation value <x> for this state?
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