
 
Physics 401 - Homework #4 
 
1) Particle-in-a-box (three points each). Consider a particle of mass (m) confined in a one-
dimensional box between x = 0 and x = L. At t = 0 the state of the system is given by a square 
function: 
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a) We wish to write this wavefunction as a sum of energy eigenstates: 
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Calculate the correct set of expansion coefficients {an} for this expression. 
 
b) Suppose that at t = 0 we decide to measure the energy of the system. What is the probability 

that the result of the measurement will be 
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c) Suppose that we perform the energy measurement, and that the result of the measurement is, in 

fact, 
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measurement? 
 
d) Now we let the new wavefunction evolve in time. What will be the fully time-dependent 
wavefunction, ? ),( tx
 
e) After the energy measurement, will the position probability distribution for the system change 
as a function of time, or will it be constant in time? Explain your answer. 
 
f) Suppose we wait 30 seconds, and then we measure the energy again. What is the probability 

that we get the same energy measurement, 
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g) Suppose that we start over with the original wavefunction, shown at the top of the page, and 
this time we do not measure the energy. Instead we allow the system to evolve in time 
undisturbed. Will the position probability function depend on time in this case? Answer yes or no, 
and explain your answer. 
 
2) A symmetric box (three points each). We have been studying the particle-in-a-box system 
with the x-coordinate measured from the left side of the box (so that the walls of the box are 
located at x = 0 and x = L). But some people prefer to have the walls of the box centered on the 
origin at x = -:L/2 and x = +L/2. This makes the potential function symmetric about x = 0. In this 
case, the stationary states (energy eigenfunctions) appear as: 
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(Note that these expressions for the )(xn are only true inside the box.... outside the box, 

the eigenfunctions are zero.) 
 
a) Show that these states satisfy the boundary conditions for the particle-in-a-box system. 
 
b) Show that these states satisfy the energy eigenvalue equation (the time-independent 
Schroedinger equation). 
 
c) What are the energy eigenvalues?  
 
d) These states satisfy an orthonormality condition: 
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Show that this is true for the particular case of n = 3 and m = 4. 
 

e) The parity operator   is defined such that it reverses the x-coordinate of any function 
of x: 
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Show that the stationary states as written above are eigenfunctions of parity. 
 
f) What are the eigenvalues of parity for the n = even and n = odd cases? 
 
3) Momentum probability distribution for a square pulse wavefunction (three points 
each).  
 
a) Calculate the momentum space wavefunction )(k for this square pulse wavefunction 
from Homework #2: 











otherwise

L
x

L

Ltx
,0

22
,

1
)0,(  

Hint #1: think Fourier Transform. Hint #2: You've already done something very similar to this on 
Homework #2. 
 

b) Plot the momentum probability distribution 
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wavefunction from part (a). You may either sketch it by hand, or use a computer plotting 
program. 
 
c) Can you tell what the expectation value for momentum is just by looking at P(k)? The answer 
is yes... but how can you tell? 



 
d) Look at the width of the P(k) distribution from part (c). Qualitatively speaking what happens to 
the width of the distribution if we make L very small? What happens if we make L very large? 
(No calculations are necessary to answer this question.)  
 
The bottom line: This is an illustration of the uncertainty principle: if we create a wavefunction 
(x) which is highly localized in a small region of space (a small L), then the width of the 
momentum distribution is very large, and a measurement of momentum will give a wide variety 
of values. Conversely, if L is very large, so the wavefunction is very spread out in space, then the 
momentum distribution can be very narrow, and a measurement of momentum will give only a 
small range of values. 
 
 


