Physics 401 - Homework #1

- 1) (3 points) Complex numbers are commonly expressed in two forms: cartesian (z = x + iy) and polar ($z = Ae^{i\theta}$). Convert $\frac{1}{1-i}$ to both of these forms, and state explicitly the values of x, y, A, and θ .
- 2) For any complex number, $\left| \frac{z^*}{z} \right| = 1$.
 - a) (3 points) Show that this is true using the cartesian form (z = x + iy).
 - b) (3 points) Show that this is true using the polar form ($z=Ae^{i\vartheta}$).

Which method is easier?

- 3) (1 point each, 4 points total) Prove the following identities for complex numbers:
 - a) $Re(z) = (z + z^*)/2$
 - b) $Im(z) = (z z^*)/2i$
 - c) $cos(\theta) = [exp(i\theta) + exp(-i\theta)]/2$
 - d) $\sin(\theta) = [\exp(i\theta) \exp(-i\theta)]/2i$
- 4) (1 point each, 4 points total)
 - a) What is the phase of the following wavefunction?:

$$\Psi(x,t) = Ae^{i(kx-\omega t)}$$

- b) Show that the phase is shifted by $\pi/2$ when the function is multiplied by i
- c) Show that the phase is shifted by π when the function is multiplied by -1.
- d) Suppose we multiply the wavefunction by a phase factor $e^{i\alpha}$. Show that this does not change the value of $\left|\Psi(x,t)\right|^2$.
- 5) **Expectation value of a discrete variable.** (three points each, 18 points total). The "quantum" in quantum mechanics refers to the fact that the energy of <u>bound states</u> is discrete, or quantized, in microscopic systems. Suppose that we have 15 identical quantum systems, and we precisely measure the energy of each one. We find the following results, measured in units of electron-Volts (eV):

$${E_i} = {8,5,4,5,4,6,7,5,6,4,4,5,6,7,4}$$

- a) Draw a histogram of these results.
- b) What was the probability of getting each of the five energy values?
- c) What was the most probable value?
- d) Calculate the expectation value of the energy of this system.
- e) Calculate the expectation value of the square of the energy of this system.
- f) Calculate the variance and standard deviation of the energy of this system.

6) **Expectation value of a continuous variable.** (3 points each, 18 points total). Energy is not always quantized, even in quantum mechanics. For example, <u>free particles</u> can have a continuum of energies. Suppose we have a very large number of identical free particles, and after measuring the energies of all of them, we find that the probability distribution of the energy in electron-Volts is described by

$$P(E) = \begin{cases} 0, E < 3\\ \alpha(E - 3), 3 \le E \le 8\\ 0, E > 8 \end{cases}$$

where (α) is a normalization constant.

- a) Calculate the normalization constant (α). What are its units?
- b) Sketch the normalized probability distribution.
- c) What is the probability of measuring an energy between 7.0 eV and 7.1 eV?
- d) Calculate the expectation value of the energy of this system.
- e) Calculate the expectation value of the square of the energy for this system.
- f) Calculate the variance and standard deviation of the energy of this system.