
Physics 401 - Homework #5 
 
1) A quantum mechanical state in two bases (12 points total). A quantum mechanical 
particle-in-a-box is in a superposition of two stationary states, the n = 4 state and the n = 
5 state. The superposition is an equal mixture of the two states, but the n = 5 state is out-
of-phase by an angle of  compared to the n = 4 state. We can represent this state by a 
ket-vector: 

stateQMfavoriteour  , 

but this symbol doesn't tell us much about the state. We can, however, write the state in 
other forms which are more explicit, and more useful for doing calculations. For 
example, we can project the state into the position basis, or we can project it into the 
energy basis. 
 
 a) (2 points) Write down an explicit representation of this state in the position (x) 
basis. In other words, write down the wave function (x) for this state. 
 b) (2 points) Write down an explicit representation for this state in the energy 
basis. In other words, write down the {an} for this state in a column vector format. 
 c) (2 points) What is the energy basis good for? To answer this, name one type of 
question that requires almost no calculation to answer in the energy basis. Also name a 
second type of question that is similarly easy to answer in the position basis.  
 d) (3 points) Calculate the overlap between this state and the state from 
Homework #3, question 2, working in the energy basis. In other words, calculate 
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using the column-vector and row-vector format of the energy basis. You may use the 
solution for Homework #3, posted on the course website. 
 e) (3 points) Write down an expression for the overlap of these two states using 
the position (x) basis. Evaluate this expression.  
 
2) Dot-product of ordinary vectors (eight  points total). To answer this question, you 

will need a hard copy of this homework assignment. Two ordinary vectors a  and b


are 
shown in the figure below.   



 

 



 
 a) (2 points) Draw a sketch of this diagram into your homework. Add to your 

sketch the projections of vectors a


 and b


onto the (x) and (y) axes. Also draw these 
projections on the hardcopy of this homework assignment. 
 b) (2 points) On the hardcopy of this assignment, use a ruler to measure the 
lengths of the (x) and (y) components for each vector in units of inches, and write down 
the explicit expression for each vector in a row vector format: (ax,ay), (bx, by). 
 c) (2 points) Calculate the squared length of each of these vectors in units of 
(squared) inches using the dot product rule: 
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Confirm that your result is correct by measuring the length of each vector with your ruler.  
 
 d) (2 points) Calculate the dot product of these two vectors using this rule: 
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Note: to calculate the dot product, please do not use this common formula: 
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. This second form is correct, of course, but it doesn't make a good 

analogy with the Dirac bracket in quantum mechanics. 
 

 
3)  Dot product in a different coordinate system (three points). In the diagram below, 

the vectors  and are shown again, but this time we've chosen to use a different 
coordinate system. 

a


b


Here's the point: By projecting the vectors onto the (x) and (y) axes, you 
essentially calculated the dot product in this way: 

 
i

yyxx biiabyyabxxabababa )ˆ)(ˆ()ˆ)(ˆ()ˆ)(ˆ(


, 

)ˆ)(ˆ( biiaba
i


   

where is  or . This is exactly analogous to the way that we calculate 
"brackets" for bra and ket vectors in quantum mechanics: 
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In this expression, we have inserted the identity operator 
n
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a  and b . By doing this insertion, we are projecting these bra and ket vectors 

into a particular basis. Make sure that you understand this expression and the 
analogous expression above for ordinary vectors. 
 



 
Repeat your calculation of the dot product of a


 and b


by projecting them onto this new 

coordinate system, measuring with your ruler, and using the sum-over-components 
formula for the dot product given in question 2(d). Again, please measure in inches. 
 

 
  

Here's the point: You can choose to work in any coordinate system that you like, but 

the dot product of  and is independent of that choice, so you should get the same 
answer in questions 2(d) and 3. Quantities that are independent of coordinate system 
are called 

a


b


scalars, and the dot product is a scalar. The vector components ax, ay, bx, and 
by, are not scalars, because they change depending on which coordinate system you 
use. In quantum mechanics, we can choose to calculate a Dirac bracket in any 
representation we choose, but the result should be independent of our choice: 
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 Physically, the result must be independent of our choice of basis, because ba  is the 

same quantum mechanical amplitude, no matter how we go about calculating its 
value. 

4) Identities with bra and ket vectors (two points each). "Prove" the following 
identities for bra and ket vectors. For parts (a), (c) and (d), you may work in the column-
vector and row-vector format of the energy basis. (Disclaimer: most of these identities we 
effectively assumed to be true when we first defined our Dirac notation, so your proof 
will be somewhat circular in a rigorous sense. "Prove" them anyway.) 

 a) abba 
 

 b) Use part (a) to show that aa is always a real number. 

 c)   baba   , for any complex number . 

 d)   bcacbac   

 e) If ba  , then ba  . Hint: Multiply the first expression by a , 

and then use the identities from parts (a) and (b). 
  



5) Dot product of bra and ket vectors (two point each). 
 a) Evaluate ba , where 21  a  and 31  b , and , , , and 

 are complex numbers. 
 b) Write down a normalization condition that  and  must satisfy if a  is a 

normalized state. 


