PHYSICS 375: OPTICS LAB

Diffraction Gratings, Atomic Spectra

Prof. Shawhan (substituting for Prof. Hall) November 14, 2016

Visual Comparisons

Diffraction Grating

(large Nolif

Pattern from a Diffraction Grating

Pattern from a Diffraction Grating

From a white-light (continuous spectrum) source:

What if light is incident on grating at an angle?

Plane wave is now coming in at an angle, so there is a phase shift from slit to slit (path lengths of tight before the grating JAFFer by θ. $\mathcal{J} \Theta$ -> shift in the bright spot positions, relative to 0;=0

Still need outgoing light to all be in phase to get a bright spot, i.e. when $a(\sin \theta_i + \sin \theta) = m\lambda$

Consequences for your experiment

Can you count on the grating in your spectrometer to be perfectly aligned, normal to the light beam? M_O

How you can align it:

Retro-reflect

Adjust so that diffracted lines are at symmetric angles

How you can take data intelligently to minimize systematic error from mis-alignment: Measure diffraction in both direction

both positive & negative O's. and average

Transmission vs. Reflection Gratings

Transmission: slits, or scratches, or a fine mesh of wires

Reflection: Reflective surface with interruptions or surface height changes

Note: angles of diffracted beams are typically <u>not</u> small, so you can't make the approximation $\sin \theta \approx \theta$

Tuned reflective surface:

To improve the "efficiency" for a certain refraction order

Energy Levels and Transitions

It's all about the potential! A quantum state describes a *system*, e.g. an electron in a potential

02004 Thomson - Brooks/Core

Bond between atoms

Spectrum of Hydrogen Lamp

Spectrum spread out using a diffraction grating

(Better than using dispersion in a glass prism)

Empirical formula by Balmer: $\lambda = (364.56 nm) \frac{n^2}{(n^2-4)} = (1-1) \frac{1}{(1-1)^2}$

Full spectrum of hydrogen emission lines:

Includes UV and infrared Must be from transitions between energy levels

Bohr Model for the Atom

Picture electrons orbiting the nucleus

Problems with that, from classical theory:

- Electron should be able to have any energy level
- Charged particle in orbit should radiate energy and collapse

Bohr's model:

Assume that electrons can only occupy discrete orbits with angular momentum equal to a multiple of \hbar

Solving the circular motion problem gives

orbit radii:

$$r_n = a_0 n^2$$
 with $a_0 = \hbar^2 / \mu k e^2 = 5.295 \times 10^{-11} m_0^2$
 $E_n = -E_0 / n^2$ with $E_0 = k e^2 / 2a_0 = 13.6 \text{ eV}$

(Neglecting fine structure from electron spin-orbit coupling, and hyperfine structure from nuclear spin couplings)

Hydrogen Atom Transitions

Alternatively,

$$E_n = \frac{-R_{\infty}hc}{n^2}$$

 R_{∞} is the "Rydberg constant", $1.09737 \times 10^7 \text{ m}^{-1}$ $R_{\infty}hc$ is the "Rydberg energy", ~13.6 eV But for a hydrogen atom, we should use the reduced mass R_H is Rydberg constant for hydrogen, $1.09678 \times 10^7 \text{ m}^{-1}$

Starting from $E_n \propto -1/n^2$...

A photon emitted or absorbed in a transition must have energy equal to the difference of two energy levels

Photon wavelengths are given by the *Rydberg formula*: $n_2=3$

$$\frac{1}{\lambda} = R_H \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$

$$= \pi_H \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$

12

Quantum Mechanics Solution

Quantum mechanical system with one electron in Coulomb (electrostatic) potential

3-D system

Exactly solvable, but the math is complicated

 $\frac{-\hbar^2}{2\mu} \left[\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2} \right] + \left(\frac{-ke^2}{r} \right) \psi = E \psi$

Extending to Other Atoms

Single-electron atoms

Simple! Change e^2 to Ze^2 and use appropriate reduced mass μ *charge of nucleus*

Multi-electron atoms

Complicated!

Multi-particle quantum state with interacting electrons

Notes about Atomic Spectra Experiment

Manual equipment and data recording

Uses a glass diffraction grating Figure out what the knobs do Vernier scale for angles – do you know how to read it? Grating needs to be aligned (might be OK already, or might not)

Suggest using Matlab scripts for data analysis calculations

Evaluate measurement uncertainties

http://physics.nist.gov/PhysRefData/Handbook/Tables/mercurytable2.htm

	Other	Neutral Atom Singly Ionized						
Main Page	Finding Element Ato	mic Periodic	Atomic Strong	3 Persi	stent Energy P	ersistent Energy Ref.		
traditi z ugo	List Name Nur	nber Table	Data Lines	Lin	les Levels	Lines Levels		
Switch to								
ASULI Version					10	3131.039	ng I	BALJU GD01
					12	3208.169	Hg II	SRUI
			St	rong	10	3532.594	Hg II	SRUI
					500 P	2650 152	ng II Ha T	DAT 50
	Vacuum		_		70	3654 836	Har	BAL50
Intensity	Wavelength (Å)	Spectrum	Reference		50	3663 279	Hart	BAL50
20	002 0047	Her TT	SD01	-	1000 P.C	3983.931	Ha II	SR01
20	095.0047	ng II	SRUI		400 P	4046.563	Hart	BAL50
12	912.819	Hg II	SRUI		60	4339.223	HarI	BAL50
20	942.630	Hg II	SR01		100	4347.494	HqI	BAL50
25	962.711	Hg II	SR01		1000 P	4358.328	HqI	BAL50
25	969.142	Hg II	SR01		12 c	5128.442	Hq II	SR01
20	1039.6315	Hg II	SR01		15	5204.768	Hg II	SR01
20	1062.7802	Hg II	SR01		80 P	5425.253	Hg II	SR01
1000 P	1649.9373	Hg II	SR01		500 P	5460.735	Hg I	BAL50
1000 P	1849.499	HorI	WA63		200 P	5677.105	Hg II	SR01
1000 P	1942 273	HaTT	SR01		50	5769.598	Hg I	BAL50
15	1072 704	Hg II	SD01		60	5790.663	Hg I	BAL50
10	1973.794	ng II	SRUI		12	5871.279	Hg II	SR01
10	1987.841	Hg II	SRUI		20 c	5888.939	Hg II	SR01
					15	6146.435	Hg II	SR01
T	Air	G			250 P,c	6149.475	Hg II	SR01
Intensity	Wavelength (Å)	Spectrum	Reference		25	7081.90	Hg I	F54
20	2026,860	Ha II	SR01		250 0	7346.508	Hg II	SRUI
400 P	2052 828	HaII	SP01		230 P	0520 109	Hg II	SRU1
20	2002.020	Hg II	SP01		200 P	10130 76	Har	BAL50
20	2224.711	ng 11	SRU1		50	13570.21	Hart	H53
10	2252.786	ng 11	SRUI		40	13673.51	HarI	н53
60	2260.294	Hg II	SR01		50	15295.82	HqI	н53
400 P	2262.223	Hg II	SR01		50	17072.79	HqI	н53
1 10	0000 004	1	0001	-	25	23253.07	Hg I	PBT55

16