PHYSICS 375: OPTICS LAB

Diffraction Gratings, Atomic Spectra

Prof. Shawhan (substituting for Prof. Hall)
November 14, 2016

Visual Comparisons

Increase number of slits:

Diffraction Grating
 (large $N_{\text {sitit }}$)

Note: despite the name, this device uses interference, not diffraction!
Many slits (or obstructions), equally spaced
Need light from all of them to be in phase, to get a bright spot

Ideal picture: plane wave incident on grating, so same phase at all slits

Pattern from a Diffraction Grating

Constructive interference condition: $a \sin \theta=m \lambda \quad \sin \theta=m \frac{\lambda}{a}$
Note: gratings can be made with small $a \rightarrow$ large θ 's
From a laser (or other monochromatic light source):
m is the "order"
of the diffraction direction

Pattern from a Diffraction Grating

From a white-light (continuous spectrum) source:

What if light is incident on grating at an angle?

Plane wave is now coming in at an angle, so there is a phase shift from slit to slit

Still need outgoing light to all be in phase to get a bright spot, i.e. when $a\left(\sin \theta_{i}+\sin \theta\right)=m \lambda$

Consequences for your experiment

Can you count on the grating in your spectrometer to be perfectly aligned, normal to the light beam? No

How you can align it:
Retro-reflect
Adjust so that diffracted lines are at symmetric angles

How you can take data intelligently to minimize systematic
error from mis-alignment: Measure diffraction in both directions,

$$
\begin{aligned}
& \text { both positive \& negative } \theta^{\prime} \text {, } \\
& \text { and average }
\end{aligned}
$$

Transmission vs. Reflection Gratings

Transmission: slits, or scratches, or a fine mesh of wires

Reflection: Reflective surface with interruptions or surface height changes

Note: angles of diffracted beams are typically not small, so you can't make the approximation $\sin \theta \approx \theta$

Tuned reflective surface:
To improve the "efficiency"
for a certain refraction order

Energy Levels and Transitions

It's all about the potential!
A quantum state describes a system, e.g. an electron in a potential

Harmonic Oscillator

Bond between atoms

Spectrum of Hydrogen Lamp

Spectrum spread out using a diffraction grating

(Better than using dispersion in a glass prism)

Empirical formula by Balmer: $\left.\quad \lambda=\underset{\text { for integers },}{(364.56 \mathrm{~nm})} \frac{n^{2}}{\left(n^{2}-4\right)}=\frac{()}{4}\right) \frac{1}{\left(\frac{1}{4}-\frac{1}{n^{2}}\right)}$
Full spectrum of
hydrogen emission lines:
Includes UV and infrared Must be from transitions between energy levels

Bohr Model for the Atom

Picture electrons orbiting the nucleus

Problems with that, from classical theory:

- Electron should be able to have any energy level
- Charged particle in orbit should radiate energy and collapse

Bohr's model:

Assume that electrons can only occupy discrete orbits with angular momentum equal to a multiple of \hbar
Solving the circular motion problem gives
orbit radic:

$$
\begin{array}{ll}
r_{n}=a_{0} n^{2} & \text { with } a_{0}=\hbar^{2} / \mu k e^{2}=5.295 \times 10^{-11} \mathrm{~m} \\
E_{n}=-E_{0} / n^{2} & \text { with } E_{0}=k e^{2} / 2 a_{0}=13.6 \mathrm{eV}
\end{array}
$$

(Neglecting fine structure from electron spin-orbit coupling, and hyperfine structure from nuclear spin couplings)

Hydrogen Atom Transitions

Alternatively,

$$
E_{n}=\frac{-R_{\infty} h c}{n^{2}}
$$

R_{∞} is the "Rydberg constant", $1.09737 \times 10^{7} \mathrm{~m}^{-1}$
$R_{\infty} h c$ is the "Rydberg energy", $\sim 13.6 \mathrm{eV}$
But for a hydrogen atom, we should use the reduced mass $\rightarrow R_{H}$ is Rydberg constant for hydrogen, $1.09678 \times 10^{7} \mathrm{~m}^{-1}$

Starting from $E_{n} \propto-1 / n^{2} \ldots$
A photon emitted or absorbed in a transition must have energy equal to the difference of two energy levels
Photon wavelengths are given by the Rydberg formula:

$$
\begin{array}{l}\frac{1}{\lambda}=R_{H}\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right)\end{array}
$$

Quantum Mechanics Solution

Quantum mechanical system with one electron in Coulomb (electrostatic) potential
3-D system
Exactly solvable, but the math is complicated
$\frac{-\hbar^{2}}{2 \mu}\left[\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}+\frac{\partial^{2} \psi}{\partial z^{2}}\right]+\left(\frac{-k e^{2}}{r}\right) \psi=E \psi$

Extending to Other Atoms

Single-electron atoms

Simple!
Change e^{2} to $Z e^{2}$ and use appropriate reduced mass μ charge of nuclens

Multi-electron atoms

Complicated!
Multi-particle quantum state with interacting electrons

Notes about Atomic Spectra Experiment

Manual equipment and data recording
Uses a glass diffraction grating
Figure out what the knobs do
Vernier scale for angles - do you know how to read it?
Grating needs to be aligned (might be OK already, or might not)
Suggest using Matlab scripts for data analysis calculations

Evaluate measurement uncertainties

