ERROR ANALYSIS FOR PHYS375
by
C. C. Chang, University of Maryland

1 Definition

Error: In a scientific measurement, an error means the inevitable uncertainty in the
measured results. As such, errors are not mistakes. You can not avoid them by
being careful. The best you can hope to do is to ensure that errors are as small as
reasonably possible, and to have some reliable estimate of how large they are.

Discrepancy: If two measurements of the same quantity disagree, then we say that
there is a discrepancy.

Note: One of the measurements could have been the so-called accepted value, value
based on previous measurements as the ”true” value, or a theoretically pre-
dicted value.

2 Two Types of Errors

Random or Statistical Errors: Experimental uncertainties that can be revealed by

repeating the measurements are called random or statistical errors.

Systematic Errors: Experimental uncertainties that cannot be revealed by repeating

the measurements are called systematic errors.

As an example, let’s measure the well-defined width of a table top with a
ruler. Uncertainty caused by needing to interpolate between scale markings is a
random error. This is because when interpolating, one is probably just as likely to
overestimate as to underestimate. On the other hand, uncertainty caused by the
distortion of the ruler is a systematic error. This is because if the ruler has stretched,
we always underestimate; if the ruler has shrunk, we always overestimate.

The treatment of random errors is quite different from that of systematic errors.
The statistical methods to be discussed later give a reliable estimate of the random
uncertainties, and, as we shall see, provide a well-defined procedure for reducing
them. On the other hand, experienced scientists have to learn to anticipate the
possible sources of systematic error, and to make sure that all systematic errors are
much less than the required precision. Doing so will involve, for example, checking
the instruments against accepted standards (or calibrated ones), and correcting them,
or buying better instruments if necessary.

3 The Mean and Standard Deviation
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Suppose we need to measure a quantity  and have identified all sources of
systematic errors and reduced them to a negligible level. Since all remaining sources
of uncertainty are random, we should be able to detect them by repeating the mea-
surement several times. Suppose we make N (where N — oo) measurements of the
quantity z (all using the same equipment and procedures), and find the N values:

L1, Loy, TN

The best estimate for z is the average of 1, z,,---, 2N, €.,

itz tey 1
_N;ml

We will also define the following quantities:

02> = population variance = ]\171—I>noo %ﬁ;(mz — z)?
o, = population standard deviation or rms (root-mean-square) deviation
N I _
For finite N, it is more appropriate to define:
2 2 . 1 ¥ —\2
o; ~ s° = sample variance = ﬁiﬂ(mi —Z)
1 N
o, ~ s = sample standard deviation = J N1 i_l(mi —z)?

The factor (N — 1) is used in the sample variance and standard deviation
instead of N. This is because we have to use data to find the mean z. In a certain
sense, this left only (N — 1) independent measured values. For large N, it does not
make any difference either N or (N — 1) is used. For now, we will use o, to mean the
sample standard deviation.

As an example, let’s assume we have z,; : 71, 72, 72, 73, 71.

M+724+724+73+71

T = 3 =171.8
1.8 — 71)? 1.8 —-72)?2+... 2.
‘7325 _ (71.8 — 71)* + (71.8 — 72)* + _ 80:0.56
5 5
o, ~ 0.7
st o~ 0.7 = write it as 0'32:
s ~ 0.8 = write it as o,

4 Meaning of the Standard Deviation - the Uncertainty in a Single Mea-
surement
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If we were to plot the above result as a histogram, we would have:

x- 7L
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Instead of just making 5 measurements, if we were to make many measurements of
z, we would get a limiting distribution as follows:

o ef

events

oo

(13 = ro . n
And the distribution could be represented by the so-called normal or Gaussian dis-
tribution:

Fxo.(z) = e~ (#=X)?/(207)

XX
3 -
{ o vabie of %)
Note that -
/ Frou(z)de = 1
Also
X+oz
fxo.(z)dz ~ 0.68 = 68%
X—0;
X420

fxo.(z)dz ~ 0.954 = 95.4%

X—-20;

Let’s suppose that we made N measurements of # and obtained the values

Zy, &9, ,2y. Let’s compute Z and o,. From the discussion above we can conclude
that

If our measurements are normally distributed and if we were to continue
the measurement of # many more times (after making N measurements
and using the same equipment), then about 68 % of our new measure-
ments would lie within a distance o, on either side of Z; that is, 68 %
of our new measurements would lie in the range z + o,.

We can rephrase the above conclusion as follows:
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Suppose, as before, that we obtain the values z;,z,,---,zy and com-
pute Z and o,. If we then make one more measurement (using the same
equipment), there is a 68 % probability that the new measurement will
be within o, of Z. Now, if the original number of measurements N was
large, then Z should be a very reliable estimate for the actual value
of z. Therefore, we can say that there is a 68 % probability that a
single measurement (using the same equipment) will be within o, of
the actual value.

5 The Standard Deviation of the Mean

If z1,z5,---,2zy are the results of N measurements of the same quantity =z,
then, as we have discussed earlier, our best estimate for the quantity z is their mean,
z. We have also discussed that the standard deviation o, characterizes the aver-
age uncertainty of the separate measurements z,z,,---,zy. However, our answer
Tpest = & represents a judicious combination of all N measurements, and there is
every reason to believe that  will be more reliable than any one of the measurements
(z;) considered separately. As we will show later, the uncertainty in the final answer
Zpest = & turns out to be the standard deviation o, divided by v/N. This quantity is
called the standard deviation of the mean, and is denoted by o7;:

We can now state our final answer for the value of z (based on the N measurements

of z) as
Oy

(Value of ) =z + ﬁ

6 More on Standard Deviation and Standard Deviation of the Mean
Let’s assume we have made many sets of N measurements of z with the same
equipment:

\ml)mZa"'amNa \mlamZ""’mN"”

"

In other words, we have made many determinations of the average of N measurements.
Each set of the N-measurements will be normally distributed about the true value
X with width o, shown as dashed curve below. The average of each set of the
N-measurements will also be normally distributed about X, but with width o; =

02/v/N, shown as solid curve below.

wistribtion f witth T2 T
D!' H&_“\_ﬂé .
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7 Weighted Averages

It often happens that a physical quantity is measured several times, perhaps in
several separate laboratories (or by different students), and the question arises how
these measurements can be combined to give a single best estimate. Suppose, for
example, that two students, A and B, measure a quantity ¢ and obtain these results:

Student A: r=xyt oy,
Student B: z=xzptop

Each of these results will probably itself be the results of several measurements,
in which case, ¢4 will be the mean of all A’s measurements and o, the standard
deviation of that mean (and similarly for zp and op). The question is how best to
combine z 4 and zp as a single best estimate for . The answer to this question is to
use the principle of maximum likelihood as follows:

Let’s assume that both measurements are ”correct” (more discussion on this
later) and they are governed by the Gaussian distribution. Let’s further assume that
the unknown true value of z is X. Then the probability of A obtaining the particular
value of z 4 is:

1

Py (z4) o —e(za=X)?/(20%)
g4
Similarly, for B:
Py(es) ox ——e-(mo=XP/20)
0B

The probability that A finds the value £, and B the value zg is just the
product of the two probabilities:

Px(x4,zp) = Px(xa)Px(zg)

| (za—x)? | (zp—X%)?
]- 20’2 + 20’2
o e A B
ocA0B
1 X
= e 2
ocA0B

where
2= @ X (en - X)

2 2
04 0B

Px(z4,zp) would be maximum if the exponent is a minimum:

O _ o _ 2Aea—X)-1) , Aap— X)(-1)
0X o’ o}
.’I:A—X :EB—X .
0'2 0'2 =0
A B
i+ 7B

o o
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Defining the weights as:
1 1
wy=— and wp = —-
04 OB
we obtain
Wy 4 + wBep

Lpest —
wyq + wp

This analysis can be generalized to combine several measurements of the same
quantity. Suppose we have N separate measurements of a quantity z,

o,z 09,---, Ny ToN
Then N
Do Wiy
Lpest N
Ei:l Wy
where

1
w; = —
o?

It is obvious to note that the larger the error o; the smaller the contribution
of z; to the mean.

It can be shown that
N -1/2
a-wbest = (Z wl)
=1

A special case: If all o;’s are equal, z.e.,

01 =09 ='"""=0N=O0
then N
1 N
g Ximti 1 L
Lhest = 1—N = ﬁZﬁl =
a2 1=1
and

1 -1/2
Ozpesy — <_2N) = L
- N

This implies that if a quantity is measured N times, the error will be improved
over the error of a single measurement by a factor of \/I_N This is what we learn when
we discussed the error of the mean earlier.

8 Consistency of the Data

After calculated the weighted average and the error, we can then calculate the
X"
N

N 2
r, — &
XZ = § :wl(mz - mbest)Z = E ( : ZbESt)
=1

i=1 o;

and compare it with N — 1, which is the expectation value of x? if the measurements
are from a Gaussian distribution. We have the following three cases:
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o If x*/(N — 1) is less than or equal to 1 and there are no known problems with
the data, we say that the data are consistent and should accept the results.

o If x?/(N — 1) is greater than 1, but not greatly so, we can still accept the
weighted average, but then we need to increase the error o, ,, by a scale factor
defined as

1/2
S=[*/(N-1)]".

o If x*/(N — 1) is very large, we say that the data are inconsistent and should
suspect that something has gone wrong in at least one of the measurements.
In this case, we should examine all the measurements carefully to see whether
some (or all) of the measurements might be subject to unnoticed systematic
errors (this could result in larger total errors than quoted). We may choose not
to use the weighted average at all. Alternatively, we may quote the weighted
average, but then make an educated guess of the error. For example, one could
use the standard deviation

1 N
Ul'best = N _ 1 1:1(ml - mbest)Z

as the error for each measurement instead of the original individual o;, and use
Oz,.,,/V N as the error in the weighted mean, instead of the weighted error

N ~1/2
a-wbest = (E wl)
=1

9 Propagation of Errors

Suppose that, in order to find a value for the function ¢(z,y), we measure the
two quantities  and y several times, obtaining N pairs of data, (z1,¥1), (22,¥2), - -+, (Zn,yn).
From the N measurements z{, z,, - -+, €, we can compute the mean Z and standard
deviation o, in the usual way; similarly, from y;, yo, - -+, yn, we can compute ¥ and
oy,. Next, using the N pairs of measurements we can compute N values of the quantity
of interest:

g = q9(zi, v5), (1=1,2,---,N)
Given gqi, g2, ---, gn, we can now calculate their mean ¢, which we assume giving

our best estimate for g;, and their standard deviation o,, which is our measure of the
random uncertainty in the value of g;.

We will assume, as usual, that all our uncertainties are small, and hence that
all the numbers z;, x5, ---, ¢y are close to Z and that all the y;, y,, - - -, yn are close
to y. We can then use Taylor series expansion to make the approximation:

g = q(zi,yi)
_ 0q _ Ogq
— Q(may)—l'a_m (ml_m)—l_@

z,y

(i — 7)

z,y
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And we have

q = W;%
1 o Oq B Oq _
= qlZ, 4+ — z, — )+ — Y; )
N; (z,9) 9 M( ) 3y M( )]
1Y 1 X g . 1 X0 B
= N;q(m’yHN;a—mw(m’ w)+ﬁ§@w(yi—y)
1 X dq| 1 . 8q] 1 X _
= q(z, )W;1+6_m,,ﬁg(mi_ )+@”ﬁ;(yi—y)
= .’L‘,y 1= l‘,y =
N 0 0
= q(a‘c,gj)

This means, to find the mean g, we have only to calculate the function g(z,y) at the
point € = and y = .

The standard deviation of the N values ¢y, g2, - -, gy is given by
1N
ol = _E(qi —-q)°
! N =1
2
1 X | dq _ Oq _
= N l—m - (wi—2) By - (yi—9)
1= z,y z,Y
Ogq 2 \o Oq H i 2
= (:)ﬁg(z )+ By ,W;(y"y)
Ty 1= z,y 1=
Oq Oq 1 X
2~ | = i —T)Yi —
250, B0 -y -9)
The first two terms are just o2 and o’Z. Let’s define the so-called the covariance of z

and y as follows:
1 N

Ozy = N Z(ml —z)(yi — 9)

=1

Oq 2 Oq 2 dq\ (0q
2 -1 2 1 2 ~1 1
e (6) "”(ay) 728 ) \ay) 7

(Note that we have dropped the subscripts Z and 3.)

then we have

If z and y are independent, then o,, = 0. This is because for a given value of
i, the quantity (z; — Z) is just as likely to be negative as it is to be positive. (This
is true for any given value of y;.) Thus, after many measurements, the positive and
negative terms in o, should nearly balance. We then have

Oq ? Oq ?
2 _ (99 2 oq 2
o= (o) o+ (or) =
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g\’ dq\’
R CENCE

If there are more than two variables, then we have
9\" , 9\" .,
& @

10 Specific Formulas

or

10.1 Sums and Differences

Let ¢ = az + by, then

Oq B (9q_
5;‘ = a, 8y —-ib

o, = y/(a)’e? + (£b)%?

= 4/a’c?+ b20'5 < added in quadrature

10.2 Products and Quotients

e For products: Let ¢ = azy, then

@ — a
dzr Y
9q _

5y az

o, = \/(ay)zofc—{—(am)zag

pe
= (a’y?c? + a’z?o?)

a2m2y2

(&) (5)
=% - (2)+(2)

= Added in quadrature for the fractional errors.

e For quotients: Let g = a%, then

@_a

Oz Y
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o o:\? o\’
o % _ (_I) 4 <_y)
q z Y
= Added in quadrature for the fractional errors.

10.3 Powers

Let ¢ = az™", then

0q tno1 ng
— = a(+n)z™" +—
Oz (£n) z
ng\?
= 0, = (i—) ol
z
nq? ,
2
o
z
o .
o T _ n("_)
q z

= The fractional error in z is increased by a factor n.

10.4 Exponentials

Let ¢ = ae®®, then

% = a(:l:b)eibx = +bg
O'q = \/ (j:bq)za-a% = bqo-a:
= 71—}
= O
q

10.5 Logarithm
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Let ¢ = aln(+bz), then

9
Oz

Oq

10.6 Three Examples

1. Measurement of g, the acceleration of gravity, using a simple pendulum.

have

_ +b _a

- +bx )

= (&) 2=t
z

l
T = 2m4/-—
g

47?]

= g = TZ

But,
a2 ar
77 = T
oy o1\ 2 ( O'T)2
%9 _ 2t 9L
~ g \/( l ) + T
Suppose
I = 9295+0.1cm
T = 1.936 + 0.004 sec
47? x (92.95) )
= Gbes: = L9367 = 979 cm/sec
We have
o] 0.1
— = —— =101
l 92.95 %
or 0.004
— = —— =102
T 1.936 %
%5 = J0.1%)? + (2 x 0.2%) = 0.4%
g
= g, = 0.004 x 979 = 4cm/sec’
= g = (979 +4)cm/sec?

11

We

Note: There is no need to improve the accuracy in the measurement of [ since
final error is dominated by the error in 7.
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2. Acceleration of a cart down a slope. We have

e,

H“-i:x\% g
™~ )

<
iy

’U; = 'vf + 2as
02 — 2?2
a = 2 — Uy
2s
But

l l
v = — Uy = —
1 tla 2 tg

Lo (BY (L1
‘Tl

| = 50+005cm (1%)

s = 100.0+02cm (0.2%)
t, = 0.0540.001sec (2%)
t, = 0.031£0.001sec (3%)

We assume

To calculate o,, let’s do it in steps.

(a) First, let’s find O'(E):

2s

S
= /(2 x 1%)? + (0.2%)?
= 2%

Note that the uncertainty in s makes no appreciable contribution.

(b) Next, let’s find 0'(%) and 0'(%):

U(L) = 2U(L) :20't1:2><2%:4%

U(L) = 20(L) :20't2:2><3%:6%

12



Error Analysis for PHYS375

= % = (343 + %(;l:) sec”?
= % = (1041 :l:\g%)sec_Z
(c) Next, let’s find O'(L_L):
1 1 = y —I_ y
) TR

(d) Lastly,

= (698 & 64)sec™* (9%)

= /(2%)2 + (9%)?
= 9%

L)
a = <2><100) x 698 + 9%

= 87.3cm/sec’ £ 9%
= (87.3 £8)cm/sec’

3. Refractive index using Snell’s law. We have

where 6; (the angle of incidence) and 8, (the angle of refraction) are measured.

To find Zine  Jet’s use
sin o ?

Oq

Osin «

Oa

sin 6,

n = —
sin 8,

\g
'%\ .

On Osin 6, 2 Osin 6 2
S AR
n sin 6, sin 6,
2

_ (@) 2

Oz z

= COos &

< use original formula

13
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And

Osin 6,

Osin 6,

sin 6,

Similarly, we have

14

cos 0,0,
cos 6,

- oy, = cot 0,0p,
sin 84

cot 0,04,

\/cot2 010'31 + cot? 020'32

Suppose we now measure the angle 6, for a couple of values of 6, and get the
results shown in the first two columns of the table below. Let’s assume that all
angles are measured to an accuracy of £1°, or 0.0175 radians. And the results

are:
61(deg) ‘ 6>(deg) ‘ n ‘cot 0100, ‘cot 0,00, ‘ o ‘ on
20+1 | 13+1 | 152 5% 8%T 9% |0.14
40+1 | 235+1 | 1.61 2% 4% 5% | 0.08
% cot(20) x 0.0175 = 0.05 =5%
t cot(13) x 0.0175 = 0.08 = 8%
And
1.52 1.61
o T oose
_— (0.114) (0.(;8) _ 159
0122 T [08)
. 1/2
anbest ﬁ = 0‘07
0147 T (008
Thus,

(Value of n) = 1.59 4+ 0.07

11 Least-Aquare Fit to a Straight Line

It often happens that we wish to determine one characteristic of an experiment
y as a function of some other quantity . That is, we wish to find the function f
such that y = f(z). Instead of making a number of measurements of the quantity y
for one particular value of z (of course, one does this so that one can determine o),

we make a series of N measurements y;, one for each of several values of the quantity
z = x;, where 7 is an index that runs from 1 to N to identify the measurements.
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Probably the most important experiments of this type are those where the
expected relation (function) is linear, and this is the case we consider here. In other
words, our data consist of pairs of measurements (z;,y;). We wish to fit the data with
an equation of the form:

y=a+ bz
by determining the values of the coefficients a and b such that the discrepancy is
minimized between the values of our measured y; and the corresponding values y; =
f(=:).

The problem is to establish and to optimize the estimates of the coefficients.
We will again use the principle of maximum likelihood for this problem.

If we knew the constants a and b, then, for any given value z; (which we assume
to have no uncertainty), we could compute the true value of the corresponding y;:

(True value for y;) = a+ bz;

Assuming that the measurement of y; is governed by a normal (Gaussian) distribution
centered on this true value, with a width o,,. Therefore, the probability of obtaining
the observed value y; is
Poy(y:) ox ——e-limabei*/(2e})
7 Ty
where the subscripts @ and b indicate that this probability depends on the unknown
values of a and b. The probability of obtaining our complete set of measurements

(mlayl)a (mZayZ)a Tty (mNayN) is the PIOduCt:
Pa,b(yhy% Tt ayN) X Pa,b(yl)Pa,b(y2) o Pa,b(yN)
R O

X ———«¢

where

As before, the best estimate for the unknown constants a and b, based on the given
measurements, are those values of a and b for which the probability P, s(y1,y2,- -, yn)
is maximum or for which x? (the sum of squares) is a minimum (that is why this
method is known as the least-squares fitting). To find the values of a and b which
yield the minimum value of x?, we differentiate x> with respect to a and b and set
the derivatives to zero:

ox’ N (y; — a— ba;)
OXT _ gy izazom)
Oa ; O'Zi

ox* Y (yi — a — bai)z;

(<)

o _21.2



Error Analysis for PHYS375

These equations can be rearranged to yield a pair of simultaneous equations:

Z;
= a) — —|— b
> R
=1 y, Yi
N 2
z;Y; z; s
Y. = az ’ +bZ ;
=1 o-yt in
The solutions are:
N  y; N z;
1 Ei:l ﬁ Ei:l 0%:-
a = _ i %
ZiY;i N z
A Ez:l 0.121 Ez:l ﬁ
Y; Y
A o2 o2 o2 o2
=1 “yi =1 "y 1i=1 ~y;i 1=1 Yi
1 N y
5 1| Zim102 iz (,5’
J— - H 7
- T N y
A E:l 0-21 Zz:l 2l
i yz
N N N N
eI O OE DI L WSO
A o2 B o2 o'
=1 “yi 1=1 y, =1 "y =1 " ¥y;
N 1 N =z
P D DO
A = Yi Y
IR DRI Y
1=1 g'gi 1=1 g'gi
N | N 2 N 2
s z;
- Z 2 Z 2 Z 2
i=1 Oy; i=1 Oy i=1 Ty

We state without proof that the errors in a and b are given as:

2

N
1 s
2 ~S 2
ol = —E
a 2
Ai:layi
1M1
2~
oy = — —
b > =
Ai:layi

Special case: Let’s sssume that all the errors are equal, we have

Oy = Oy, = " = Oyy = Oy
then
1 (N N N N
a = K mezyz —Zmizmiyi
=1 =1 =1 =1
1 N N N
b = A NY ziyi— Y =)y
=1 =1 =1
where

N N
A=N>zi— (D z
=1 =1
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and

12 Uncertainty in the Measurement of y

If each of the y; for a given z; is measured many times, one can certainly get an
idea of o, by examining the spread in their values, ¢.e., the sample standard deviation.
These values of o, can then be used in the least-squares fitting. On the other hand,
if any pair of (z;,y;) is measured only once, one can not calculate o,, by examining
the spread in the measurements. This is because the numbers y;, y,, - - -, yn are not
N measurements of the same quantity (same ;). Although one can not use these
data to calculate the individual o, one can still make an estimate of the common
uncertainty o, in the numbers y;, y,, - -+, yn by analyzing the data themselves.

Let’s assume that the measurement of each y; is normally distributed about
its true value a + bz; with width parameter o,. Thus, the deviations y; — a — bz; are
normally distributed, all with the same central value of 0 and with the same width
oy. This immediately suggests that a good estimate for o, would be given by the
sum of squares of deviations of the data points from the calculated mean divided by

(N —2):
2 1T 2
%= N 3 ;(yl —a — bz;)
The presence of the factor (N — 2) is reminiscent of the (N — 1) factor that appeared
in our estimate of the standard deviation of N measurements of one quantity .
There we made N measurements ¢, z,, ---, ¢y of one quantity . Before we could
calculate o,, we had to use our data to find the mean Z. In a certain sense, this left
only (N — 1) independent measured values; so we say that, having computed z, we
have only (N —1) degrees of freedom left. Here we made N measurements, but before
calculating o, we had to compute the two quantities a and b. Having done this, we

had only (N — 2) degrees of freedom left.



