1. 2-4

Assuming eyes at top of the head, the law of reflection allows you to see all of yourself with a mirror half your height, the same height off the floor.

2. 2-6

The second image is from reflection off the bottom surface.
The ratio of distances ($3 \mathrm{~mm} / 1.87 \mathrm{~mm}$) is the same as the ratio of sines of the angles; by
Snell's law, this is the ratio of refraction index (1.6)

3. 2-7

$\mathrm{n}_{\mathrm{g}} \sin \theta_{\mathrm{c}}=\mathrm{n}_{\text {air }} \sin \pi / 2 \sim 1$
$\theta_{\mathrm{c}}=\operatorname{asin}\left(1 / \mathrm{n}_{\mathrm{g}}\right)=\operatorname{atan}(1.9 / 2.25)$
$\mathrm{n}_{\mathrm{g}}=1.55$

4. 2-10

Reflected image:

Use Eq. 2-12 to find
s' $=-7.5 \mathrm{~cm}$.

Refracted image:

$5 \mathrm{~cm} / 1.5=10 / 3 \mathrm{~cm}$ from flat surface. See problem 8 below.
The reflected image therefore appears 10 cm below the flat surface.

5. 2-32

At any interface i, $\mathrm{n}_{\mathrm{i}} \sin \theta_{\mathrm{i}}=\mathrm{n}_{\mathrm{i}+1} \sin \theta_{\mathrm{i}+1}$ At interface i+1, $\mathrm{n}_{\mathrm{i}+1} \sin \theta_{\mathrm{i}+1}=\mathrm{n}_{\mathrm{i}+2} \sin \theta_{\mathrm{i}+2}$ so
$\mathrm{n}_{\mathrm{i}} \sin \theta_{\mathrm{i}}=\mathrm{n}_{\mathrm{i}}+2 \sin \theta_{\mathrm{i}+2}$
by induction,
$\mathrm{n}_{\mathrm{i}} \sin \theta_{\mathrm{i}}=\mathrm{n}_{\mathrm{f}} \sin \theta_{\mathrm{f}}$

So minimum deviation is $\sim 0.6794 \mathrm{rad}$.

7. 3-7

Just re-do the above w/ $\mathrm{ng}=1.525$ and 1.535 and take the difference:
$0.7026-0.6872=0.0154 \mathrm{rad}(\sim 0.9 \mathrm{deg})$
8. Prove that to someone looking straight down into a swimming pool, any object in the water will appear to be $3 / 4$ of its true depth. (HINT: $n_{\text {water }}=4 / 3$)

$$
n_{w} \sin \theta_{w}=n_{a} \sin \theta_{a}
$$

$$
n_{w} \frac{x}{\sqrt{d^{2}+x^{2}}}=\frac{x}{\sqrt{a^{2}+x^{2}}}
$$

For infinitesimal $\mathrm{x}, \frac{a}{d}=\frac{1}{n_{w}}=3 / 4$
9. Light is incident in air perpendicularly on a sheet of crown glass having an index of refraction of 1.552 . Determine both the reflectance and the transmittance.

$$
R=\left(\frac{n_{i}-n_{t}}{n_{i}+n_{t}}\right)^{2}=0.043 \quad T=\frac{4 n_{i} n_{t}}{\left(n_{i}+n_{t}\right)^{2}}=0.957
$$

