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‘Chapter 4

Group Theory

Disciplined judgment, about what is neat
and symmetrical and elegant, has time and
time again proved an excellent guide to
how nature works.

—Murray Gell-Mann

In classical mechanics the symmetry of a physical system leads to conserva-
tion laws. Conservation of angular momentum (L) is a direct consequence of
rotational symmetry, which means invariance of some physical observables
(suchas L2) or geometrical quantities (such as length of a vector or distance be-
tween points) under spatial rotations. In the first third of this century, Wigner
and others realized that invariance was a key concept in understanding the
new quantum phenomena and in developing appropriate theories. For exam-
ple, Noether's theorem establishes a conserved current from an invariance
of the Lagrangian of a field theory. Thus, in quantum mechanics the concept
of angular momentum and spin has become even more central. Its generaliza-
tions, isospin in nuclear physics and the flavor symmetry in particle physics,
are indispensable tools in building and solving theories. Generalizations of the
concept of gauge invariance of classical electrodynamlcs to the isospin sym-
metry lead to the electroweak gauge theory. .

In each case the set of these symmetry operations forms a group, a math-
ematical concept we shall soon define. Group theory is the mathematical tool
to treat invariants and symmetries. It brings unification and formalization of

: 229
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principles such as spatial reflections, or parity, angular momentum, and geom-
etry that are widely used by physicists.

In geometry the fundamental role of group theory was recogmzed more
than a century ago by mathematicians (e.g., Felix Klein’s Erlanger Programm,).
In Euclidean geometry the distance between two points, the scalar product of .
two vectors or metric, does not change under rotations or translations. These
symmetries are characteristic of this geometry. In special relativity the metric,
or scalar product of four-vectors, differs from that of Euclidean geometry in
that it is no longer positive definite and is invariant under Lorentz transforma-
tions.

For a crystal, the symmetry group contains only a finite number of rotations
at discrete values of angles or reflections. The theory of such discrete or finite
groups, developed originally as a branch of pure mathematics, is now a useful
tool for the development of crystallography and condensed matter physics.
When the rotations depend on continuously varying angles (e.g., the Euler
angles of Section 3.3) the rotation groups have an infinite number of elements.
Such continuous (or Lie)!groups are the topic of this chapter. '

Definition of Group

Agroup G may be defined as a set of ohjects or, in physics usually, symmetry
operations (such as rotations or Lorentz transformations), called the elements
g of G, that may be combined or “multiplied” to form a well-defined product
in @ that satisfles the following conditions:

1. If ¢ and b are any two elements of G, then the product ab is also an element
of G. In terms-of syminetry operations, b is applied to the physical system
before ¢ in the product, and the product ab is equivalent to a single syminetry
operationin G. Multip]icaﬁon associates (or maps) an element ab of G with
the pair (a, b) of elements of G; this property is known as closure under
multiplication. - .

2. This multiplication is associative, (ab)e = a{bc).

3. There is a unit or identity element? 1 in G such that la = al = a for every
elementa in .

4. G must contairi an mverse or rec1procal of every element a of &, labeled
a~!suchthatea™! = a la =1

Note that the unit is unique, as is the inverse. The inverse of 1'is 1 because
la=al =afora = 1yields 1-1 = 1. If a second unit 1’ existed we would
have 11’ = 'l = I’and 1'l = 11’ = 1. Comparing we'see that 1’ = 1. Similarly, -
if a second inverse a’~* existed we would have al¢ = aa™! = 1 = ag" .
Multiplying by o}, we geta™' = a1, '

! After the Norwegian mathematician Sophus Lie.
2Following E. Wigner, the unit element of a group is often Iabeled E from the Germa_n Emhelt
(i.e., unit) or just 1 or [ for identity.
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Coordinate Rotation Anexample ofa group isthe set of counterclockmse
coordinate rotations

AR x! _ fx _ Cosp Sll'l(ﬂ T .
lX}f(y’) __R(qo_)(y)"(—smco cosw)(y) Y

'through an angle ¢ of the xy -coordinate system' to a new orientation (see

Fig. 2.20). The product of two rotations is defined by rotating first by the angle

@2 and then by g;. According to Egs. (3.36) and (3.37), the product of the -

orthogonal 2 x 2 matrices, R(g1)R(ge), describes the product of two rotations
( cosg;  sing; ) ( cos@y - sin gog)

—sing; cosg; )\ —sing; cosge

_ ( cos(gr +¢2)  sin(py + 902))

sin(p; + @2) “cos(gy + ps)
using the addition formulas for the trigonometric functions. The product is
clearly a rotation répresented by the orthogonal matrix with angle ¢; + gs. The
product is the associative matrix multiplication. Tt is commutative or Abelian
because the order in which these rotations are performed does not matter. The
inverse of the rotation with angle ¢ is that with angle —¢. The unit corresponds
to the angle ¢ = 0. The group's name is SO(2), which stands for special
orthogonal rotations in two dimensions, where special means the 2 x 2
rotation mafrices have determinant +1, and the angle ¢ varies continuously

from (} to 27, so that the group has mﬁmtely many elements. The angle is the
group parameter a8

4.2)

A subgroup G’ of a group @ is a group consisting of elements of & so that the
product of any of its elements is again in the subgroup G*; that is, ' is closed
under the multiplication of G. For example, the unit 1 of G always forms a
subgroup of G, and the unity with angle ¢ = 0 and the rotation with ¢ = 7
about some axis form a finite subgroup of the group of rotations about that
axis.

If gg'g~" is an element of G’ for any g of G and g’ of &, then G’ is called -

an invariant subgroup of G. If the group elements are matrices, then the
element gg'g~" corresponds to a similarity transformation [see Eq. (3. 108)] of
¢'in G' by an element g of @ (discussed in Chapter 3). Of course, the unit 1
of G always forms an invariant subgroup of G because glg™! = 1. When an
element g of G lies outside the subgroup G, then gg’g~" may also lie outside
G'. Let us illustrate this by three-dimensional rotations.

Similarity Transformation Rotations of the coordinates thro'ugh a finite
angle ¢ counterclockwise about the z-axis in three-dimensional space are dé-
scribed as
o 2 fcosp sing 0\
¥ 1 =Re) | v —sing cosg 0
-4 z 0 0 1

, (4.3)

N g
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which form a group by a generalization of Eq; (4.2) to our special 3 % 8 matri-
ces that keep their special form on multiplication. Moreover, the order of the
rotations in a product does not matter, just like in Eq. (4.2), so that the group
is Abelian. A general rotation about the z-axis is given by the matrix
1 0 0
Rip)=]0 cosp sing
{0 -—sing cosgp

Now consider a rotation R, by 90° about the x-axis. Its matrix is

1 0 0
R,=10 0 1],
Ao -1 0
and its inverse is
100
RI=|0 0 -1},
Ao 10

corresponding to the angle —90°. .This can be checked by multiplying ther:
RzR-! = 1. Then

1 0 0y /1 0 0 100
ReRu(@R;'=]0 0 14|00 cosg sing 0 0 -1

\0 -1 0 0 —sing cosg 010

cosp 0 —sing

= 0 1 0 ,

\ sing 0 cosg ‘

which is a rotation by —¢ about the y-axis and no longer a rotation about the

zaxis so that this element lies outside the subgroup-of rotations about the z
axis, and this subgroup is not an invariant subgroup. The set of these elements
for all ¢ form a group called conjugate to the group of rotations about the
zaxis. B

*. Orthogonal 7 x ® matrices form the group O(n), a.nd they form SO(n) if their .

determinants are +1. (S stands for “special” and O for “orthogonal”), with
elements ‘denoted by O;. Because 0; = 10N ! (see Section 3.3 for orthogonal
3 x 3 matrices that preserve the lengths of vectors and distances hetween
points in three-dimensional Euclidean space), we see that the product

0,0, = 001 = OEI_OII = (0,02) !

is alsc an orthogonal matrix in O(n) or SO(n). The inverse is the transpose
(orthogonal) matrix. The unit of the group is 1. A real orthogonal 2 X nmafrix
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has n(n— 1}/2 independent parameters. For n = 2, there is only one parameter:
one angle in Eq. (4.1). For n = 3, there are three independent parameters:
for example, the three Euler angles of Section 3.3, and SO(3) is related to
rotations in three dimensions, just as SO(2) is in two dimensions. Because
O(n) contains orthogonal transformations with determinant —1, this group

" includes reflections of coordinates or parity inversions. Likewise, unitary nx# -

matrices form the group U(m}, and they form StU(n) if their determinants are
+1. Because U = U‘1 (see Section 3.4 for unitary matrices, which preserve
the norm of vectors wlth.compiex components and distances between points
inn-dimensional complex space), we see that

(U1Uz)' = VU] = U3 107! = (U1U)™!

so that the product is unitary and an element of U(n) or SU(n). Each unitary
matrix obvicusly has an inverse, which again is unitary. Orthogonal matrices
areunitary matrices that are real so0 that SO(w) forms a Subgroup of SU(TL),
does O(n) of U(n). -

‘Simple Unitary Groups The phase factors ¢¥, with real angle 6, of quan-

tum mechanical wave functions form a group under' multiplication of complex
numbers because the phase angles add on multiplying ¢ ¢* = ¢+ More-
over, () = e~ and ¢?e~% = 1 show unitarity and inverse, and 6 = 0 gives
the unit. This group (of unitary 1 x I matrices) has one continuous real param-
eter and is therefore called U(1). The two elements 1 form a finite (unitary)
subgroup, and the four elements +1, =4 form another subgroup.

A finite unitary group of 2 x 2 matrices is defined by the two-dimensional
unit matrix and one of the three Pauli matrices, o;, using matrix multiplication.
Because o7 = 1y, the inverse o, ' = o;and 15 = 1,. ® :

When a potential has spherical symmetry we choose polar coordinates, and
the associated group of transformations is a rotation group. For problems with
spin (or other internal properties such as isospin or flavor), unitary groups play
- asimilar role. Therefore, in the following we discuss only the rotation groups
SO(n) and the unitary group SU(2) among the classical Lie groups.
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A characteristic of continuous groups known as Lie groups is thatthe elements

- arefunctions of parameters having derivatives of arbitrary orders such as cos ¢

and sin ¢ in Eq. (4.1). This unlimited differentiability of the functions allows us
to develop the concept of generator and reduce the study of the whole group
to a study of the group elements in the neighborhood of the identity element.
Lie’s essential idea was to study elements R in a group @ that are infinites-
imally close to the unity of . Let us consider the SO(2) group as a simple
example. The 2 x 2 rotation matrices in Eq. (4.1) can be written in exponential
form using the Fuler identity {Eq. (3.183)] as
cosy sing ; o . '
Rlg) = ( ) = la c0s ¢ +iog5ing = exp(icag). (4.9)
From the exponential form it is obvious that multiplication of these matrices
is equivalent to addition of the argumenis

R(e2)R(p1) = exp(ioagn) explioepr) = exp(ioa(@i + ¢2)) = R@:1 + @),

—sing cosg

of course, the rotations close to 1 have small angle ¢ 2 0.

This suggests that we look for an exponential representation
R =exp(isS), &—0, (4.10)

for group elements R in & close to the unity, 1. The operators S of the infinites-
imal transformations €S are called generators of G. Therefore, o3 in Eq. (4.9)
is the generator of rotations about the z-axis. Thus, for SO(2) as defined by
Eqg. (4.1) there is only one linearly independent generator, og. In SO(3) there is
a generator for rotations about each axis. These generators form alinear space
because multiplication of the elements R of the group transtates into addition
of generators 5; its dimension is defined as the order of G. Therefore, the or-
der of SO(2) is 1, and it is 3 for SO(3). One can also show that the commutator
of two generators is again a generator

(S5, Sel =) chSi,
[}

where the ¢'s are defined as the structure constants of the group. The vector
space of generators can be endowed with a multiplication by defining the
commutator as the product of two generators. This way the vector space of
generators becomes an algebra, the so-called Lie algebra.

Because R does not change the volume—that is, det(R) = 1—we use Eq.
(3.184) to see that ‘

det(R) = exp(trace(InR)) = exp(istrace(S)) = 1,
which iniplies that generators are traceless: '
tr(5) = 0. 4.11)

This is the case for the rotation groups SO(n) and unitary groups SU{n).
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If R of G in Eq. (4.10) is unitary, then St = Sis Hermitian, which is also the
cage for 30(n) and SU(n). Hence the i in Eq. (4.10).

Returning to Eq. (4.5), we now emphasize the most important result from .

group theory. The inverse of Ris just R~ = exp(—ieS). We expand Hy accord-
ing to the Baker-Hausdorff formula [Eq. (3.185)]; taking the Hamiltonian H
and S to be operators or matrices we see that

H=Hg = exp(icS)H exp(—icS) = H+ ic[S, H]—%SZ[S[S, Hl+ . (412)

We subtract H from Eq. (4.12), divide by &, and let ¢ — 0. Then Eq. (4.12) -

implies that for any rotation close to 1in G.the commutator
S, H]=0. (4. 13)

We see that S is a constant of the motion: A symmetry of the gystem
has led to a conservation law. If S and A are Hermitian matrices, Eq. (4.13)
states that S and H can be simultaneously diagonalized; that is, the eigenvalues
of S are constarits of the motion. If S and H are differential operators like the
Hamiltonian and orbital angular momentum L2 L, in quantum mechanics,
then Eq. (4.13) states that S and A have common elgenflmctlons and that the

degenerate eigenvalues of H can be distinguished by the eigenvalues of the -
generators S. These eigenfunctions and eigenvalues, s, are solutions of separate -

differential equations, S¢r; = 8y, 50 that group theory (i.e., symmetries) leads
to a separation of variables for a partial differential equation that is invariant
under the transformations of the group. For examples, see the separation of
variables method for partial differential equations in Section 8.9 and special
functions in Chapter 11. This is by far the most unportant apphcatlon of group
theory in quantum mechanics.

In the following sections, we study orthogonal and unitary groups as ex-
amples to understand better the general concepts of this section.

-

E Rotation Graups S0(2) and SO(3)

For SO(Z) as defined by Eq. (4.1) there is only one lmearly independent gener-
ator, os, and the order of S0(2) is 1. We get oy from Eq. (4.9) by dlfferentlatlon
at the unity of SO(2) (i.e.,, ¢ = 0),

de
" For the rotations Re(¢) about the z-axis described by 3 x 3 matrices in
Eq. (4.3}, the generator is given by _

el 0 —i 0
LACO R Y (4.15)
9 oo 00 0

Rot:
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Here, oy is recognized in the upper left-hand corner of 5. The rotation R.(8¢)
through an infinitesimal angle é¢ may then be expanded near the unity (¢ = 0)

Ra(89) = 13 +18¢5;, _ (4.16)

with terms of order (89)® and higher omitted. A finite rotation R(y) may be

compounded of successive infinitesimal rotations

Re(8¢1 + 8¢2) = (13 + 1801 S:)(15 + i8¢2S.). (417)
Let 599 @ /N for N rotatlons with N — o¢. Then,

Re(p) = Jim [Re(p/N)I" = lim [15 + (ip/N)S:IY = exp(inS,),  (418)

which is ancther way of getting Eq. (4.10). This form identifies S, as the gen-
erator of the group R., an Abelian subgroup of SO(3), the group of rotations in
three dimensions with determinant +1. Fach 3 x 3 matrix R,(p) is orthogonal
(hence unitary), and trace(S,) = 0 in accordance with Eq. (4.11).

By differentiation of the coordinate rotations

1 0 0 ' cosf 0 —sing

Re(¥) =10 cosy siny |, R f)= ¢ 1 0 , (419
0 —siny cosy sing- 0 cos#

we get the generators

00 0 0 0 4 :
Se=[0 0 —i|, S,=[0 0 o] (4.20)
0 i 0 —i 0 0 :

of Rx(R,), the subgroup of rotations about the z- (y-)axis.

Rotation of Functlous and Orbltal Angular Momentum

In the foregoing discussion the group elements are matrices that rotate the
“coordinates. Any physical system being described is held fixed. Now let us

hold the coordinates fixed and rotate a function v (x, ¥, 2) relative to our fixed

coordinates. With R to rotate the coordinates,

. x' = Rx, {4.21)
we define R on ¢ by
R‘W('r, ?J, 2’) = W(x: y} 2,’) = ":b'(x,)- . (422)

In words, R operates on the function 4, creating a new fanction ¥’ that
is numerically equal to v (x"), Where x’ are the coordinates rotated by R. If
R rotates the coordinates counterclockwise, the effect of R is to rotate the
pattern of the function v counterclockwise, as shown in Fig. 2.20.
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Returning to Egs. (4.3), (4.15), and (4.20) consider an infinitesimal rotaﬁon
again, ¢ — 8g. Then, using R, [Eq. (4.3)], we obtain
RGO uD =+ We y-2ie D (429
"The right side may be expanded to first order in d¢ to give _
R (@, 4 2) = ¥ @, 1, 2) = Soplady /3y Yow/0x} + O
= (- iBpL (@ %), e

where the differential expression in curly brackets is the orbital angular mo-
mentum iL, (Exercise 1.7.12). This shows how the orbital angular momentum
operator arises as a generator. Since a rotation of first ¢ and then ¢ about the
z-axis is given by

| R+ B9 = RAGORo = (L~ BOLIRLOW, 2
we have (as an operator equation)
dR: _ . Relp+380) — Re(9)

i —— = —iL:R.(p). “26)
In this form, Eq. (4.26) integrates immediately to _
Re(¢) = exp(—ipLy). . (4.27)

Note that R.(¢) rotates functions (counterclockwise) relative to fixed coordi- -
nates [so Egs. (4.27) and (4.10) are similar but not the same] and that L, is the .-
z-component of the orbital angular momentum L. The constant of integration
is fixed by the boundary condition R,(0) = 1.

If we recognize that the operator

_ {3 /ox :
Ly =(x, 4 2)S: | 9/0y |, . : (4.28)
o/dz :
it becomes clear why Ly, L, and L, satisfy the same commutation relation '
[Liy Ly} = doginL (4.29)

as Sg, Sy, and 5, énd yield the structure constants i of SO(3).

Specml Unitary Group SU(Z)

Since unitary 2 x 2 matrices transform complex two-dimensional vectors pre-
serving theirnorm, they represent the most general transformations of (a hasis
in the Hilbert space of) spm wave functions in nonrelativistic quantum me-
chanics. The basis states of t_lus system are conventionally chosen to be

|¢>=(é), | mj:(‘j),

corresponding to spin % up and down states, respectively. We can show that the
special unitary group SU(2) of such unitary 2 x 2 matrices with determinant
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-+1 has the three Pauli matrices o; as generators. Therefore, we expect SU(2)
to be of order 3 and to depend on three real continuous parameters &, n, ¢,
which are often called the Cayley-Klein parameters and are essentially the
SU(2) analog of Euler angles. We start with the observation that orthogonal
2 x 2 matrices [Eq. (4.1)] are real unitary matrices, so they form a subgroup of

SU(2). We also see that
| (ew' 0 ) '
0 e )

is unitary for real angle « with determinant +1. Therefore, these simple and
manifestly unitary matrices form ancther subgroup of SU(2} from which we
can obtain all elements of SU(2)—that is, the general 2 x 2 unitary matrix
of determinant +1. For a two-component spm ! wave fimction of quantum
mechanics, this diagonal unitary matrix corresponds to multiplication of the
spin-up wave function with a phase factor ¢* and the spin-down component
with the inverse phase factor. Using the real angle 1 instead of ¢ for the rotation
matrix and then multiplying by the diagonal unitary matrices, we construct a
2 % 2 unitary matrix that depends on three parameters and is clearly a more
general element of SU(2):

(eﬁ” O)(cosn sin g (e’iﬁ O)
0 e ™ /\—sinp cosp/\ 0 e %

e®cosy  e¥sing )(e"ﬁ 0
T \—esing e ®cosnp/\ 0 e ¥
( ¢CetNeasny @ Pging )

_e“"i(‘!—ﬁ) sin i/ g—tle+p) cosn

Defininge+ g =&, o —f = ¢, wehavein fact constructed the general element
of SU(2):

e cosn  €¥siny a b |
e )= )=(5 o) am

e~ smn e"‘f cosn - a*

Where laP + Ibl2 = 1. It is easy to check that the determmant det(Uz) = 1 by

the product theorem of Section 3.2 and that ul gUs = 1=Uy U2 holds provided
£, n, ¢ are real numbers.
To get the generators, we differentiate

38U, (1 0) o
22 = o, | (431a)
T IEAOr,urO {o 1. 3 (4.31a)
197 (0 —i)
—f— =1 . = oa. 4.31b
07 1p=0,;=0 i 0 ? ¢ )

To avoid a faétor 1/sin n for n — 0 upon differentiating with respect to ¢, we
use instead the right-hand side of Eq. (4.30} for Ug for pure imaginary b = i
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with g -» 0. Differentiating such a-Us, we get the third generator

3 (VI-F B o (TE 01y
T —7=)| TN e == | T\io)T
1 18 =0 . . /12 .

ap B 20
(4.31¢)

Being generators, these Pauli matrices are all traceless and Hermitian. A corre-
spondence with the physical world is obtained if we scale the SU(2) generators
.sothat they yield the angular momentum commutators. With the Pauli matrices
as generators, the elements Ui, Ug, Us of SU(2) may be generated by

Up = exp(—iwo1/2), Uy = exp(=ifop/2), Uy =exp(~iyos/2). (4.32)

The three parameters are real, and we interpret them as angles. The extra
seale factor 1/2 is present in the exponents because $; = o;/2 satisfy the same
commutatlon relatlons 4

184 851 = isijksk, (4.33)

as the orbital angular momentum in Eq. (4.29). :

Using the angular momentum matrix Sg, we have as the correspondmg
rotation .operator R,(¢) = exp(ipo;/2) in two-dimensional (complex wave
function) space, analogous to Eq. (4.3) that gives the operator for rotatmg the
Cartesian coordinates in the three-space.

For rotating the two-component vector wave function {spinor) or a spin
% particle relative to fixed coordinates, the .rotation operator is Ru(y) =
exp(—ipas/2) according to Eq. (4.27).

Using in Eq. (4.32) the Euler identity [Eq. (3.183)] we obtain

U; = cos(e/2) — io; sin(e/2), 4.39)

etc. Here, the pa.rameter o appears as an angle, the coefficient of an angular
momentum matrix-like ¢ in Eq. (4.27). With this identification of the exponen- -
tials, the general form of the SU(2) matnx (for rotating functions rather than
coordinates) may be wriiten as )

- e B, v) = exp(—iyos/2) exp(—ifoz/2) exp(—iaos/2), (4.35)
where the SU(2) Euler angles o, g, y differ fromthe o, 8, ¥ used in the defini-
tion of the Cayley—Klein parameters &, n, ¢ by a factor of 1/2. Further discus-

sion of the relation between SO(3) and orbital angular momentum appears in
Sections 4.3 and 11.7. '

The. orbital angular momentumn operators are the generators of the rofation
group S0O(3) and (1/2) the Paulispin matrices are those for SU(2), the symmetry
group of the Schrodmger equation for a spin 3 L particle such as the electron.
Generators obey commutation relations characteristic of the group.

4 The structure constants (g;j,) lead to the SU{2) representations of dimension 2J--1 for generators
of dimension 2J + 1, J = 0, 1/2, 1, .. .. The integral J cases also lead to the representations of
30(3). ) -
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EXERCISES

4.2.1 (i)Showthatthe Paujj matrices are the generators of SU(2) without using
the parameterization of the general unitary 2 x 2 matrix in Eq. (4.30).
ITint. Exploit the general properties of generators.

4.2.2 Prove that the general formofa 2 x 2,umtar$ unimodular matrix is

U= .
- _b* a*

with a*a -+ b*b = 1. Based on this result, derive the parameterization of
Eq. (4.30).

4.2.3 A translation operator 7'(¢) converts df(x) to Yz + a),

T(ay (@) =¥ (x +a)

In terms of the (quantum mechanical) linear momerntum operator p, =
—id/dx, show that T'(a) = exp(iap;) (i.e., p, is the generator of transla-
tions). : :
Hint. Expand ¢ (x -+ a) as 2 Taylor series.

4.2.4 Consider the general SU(2) element Eg. (4.30) to be built up of three
Euler rotations: (i) a rotation of @/2 about the z-axis, (i) a rotation of
b/2 about the new z-axis, and (iif) a rotation of ¢/2 about the new z-axis.
(All rotations are counterclockwise.) Using the Pauli & generators, show
that these rotation angles are determined by

a=¢(-¢+nrf2=a+m/2
b=2n =p
c=§+{—n2=y-nm/2

Note. The angles a and b here are not the a and b of Eq. (4.30).

4.2.5 We know that any 2 x 2 matrix A canbe expanded as A=ay-1+a - o,
where 1is the two-dimensional unit matrix. Determine ap and a for the
general SU(2) matrix in Eg. (4.30).

4.2.6 Rotate a nonrelativistic wave function ¢ = (fry, ) of spm % about the
z-axis by a small angle df. Find the corresponding generator.

The. classical concept of angular momentum Lgass = T X p is presented in
Section 1.3 to introduce the cross product. Following the usual Schrodinger
representation of quantum mechanics, the classical linear momentum p is
replaced by the operator —iV. The quantum mechanical orbital angular



