
Homework10
1.
Evaluate the integral I (~r) in the Cartesian coordinate so that I (~r) can be

the product of three independent inegrals:
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where r2 = x2 + y2 + z2:

Note the Gaussian integral
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2. Cosider two boundary conditions :
(a) t < t0; G (t; t0) = 0, (b) t > t0; G (t; t0) = 0
(a)
For t < t0; G (t; t0) = 0
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@G(t;t0)

@t + �G (t; t0) = 0; G (t; t0) = Ae��t

For t � t0;
R t0+"
t0�" dt

�
@G(t;t0)

@t + �G (t; t0)

�
=
R t0+"
t0�" dt� (t� t

0) ;

G (t0 + "; t0)�G (t0 � "; t0) = 1; Ae��t0 � 0 = 1; A = e�t
0

Therefore, G (t; t0) = e�(t
0�t)� (t0 � t) :

(b)
For t > t0; G (t; t0) = 0

For t < t0;
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It satis�es
@g(t;t0)
@t + �g (t; t0) = 0:

Note: � (x� y) = 1 if x > y; � (x� y) = 0 if x < y:

3.
Using separation of variables: let  (x; y) = X (x)Y (y) and insert it into the

Helmholtz equation. d2X(x)
dx2 Y (y) +X (x) d

2Y (y)
dy2 + k2X (x)Y (y) = 0: Divide it

by  (x; y) :
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2 � �k2x;

d2Y (y)

dy2

Y (y) = �(k2 � k2x) � �k2y: The so-
lution for these two equations will be X (x) = A cos (kxx)+B sin (kxx) ; Y (y) =
C cos (kyy)+D sin (kyy) : The coe¢ cients are determined by the boundary con-
ditions X (0) = X (Lx) = 0; Y (0) = Y (Ly) = 0: You will get A = C =
0; kxLx = nx�; kyLy = ny� where nx and ny are integers: Therefore the nor-
mal modes will be  (x; y) = E sin (kxx) sin (kyy) with kx =

nx�
Lx

; ky =
ny�
Ly

and k2 = k2x + k2y: Here E can be determined by normalization condition
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= 1 and you will get E = 2p

LxLy
: Therefore the nor-

mal modes are  (x; y) = 2p
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sin (kxx) sin (kyy) :

4.

Now prove
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Integrating from r = 0 to r = R :R R
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Upon integrating by parts
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If m 6= n;
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Now we have proved
R 2�
0

e�i(m1�m2)�d� = 2��m1m2 and
R R
0
rJm

�
k
(m)
n1 r

�
Jm

�
k
(m)
n2 r

�
dr =

C 0�n1n2 where C 0 normalized constant. Therefore,
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5.
Expand a function f (r; �) in terms of unm (r; �) :
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Using the orthogonal relation in problem4.
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