Homework 10

1.

Evaluate the integral $I(\vec{r})$ in the Cartesian coordinate so that $I(\vec{r})$ can be the product of three independent inegrals:

From the first integrals:
$$I(\vec{r}) = \int \frac{d^3k}{(2\pi)^3} e^{i\vec{k}\cdot\vec{r}} e^{i\frac{\hbar k^2}{2m}t} = \frac{1}{(2\pi)^3} \int dk_x dk_y dk_z e^{i(k_x x + k_y y + k_z z) + i\frac{\hbar t}{2m} \left(k_x^2 + k_y^2 + k_z^2\right)}$$
$$= \frac{1}{(2\pi)^3} \left(\pi / \frac{-i\hbar t}{2m}\right)^{3/2} \exp\left(-\frac{x^2 + y^2 + z^2}{-4\frac{i\hbar t}{2m}}\right) = \frac{1}{(-2\pi i\hbar t/m)^{3/2}} e^{-\frac{imr^2}{2\hbar t}}$$
 where $r^2 = x^2 + y^2 + z^2$.

Note the Gaussian integral $\int_{-\infty}^{\infty} e^{-ax^2+bx} dx = \sqrt{\pi/a}e^{\frac{b^2}{4a}}$.

(a)
$$t < t'$$
, $G(t, t') = 0$, (b) $t > t'$, $G(t, t') = 0$

For
$$t < t'$$
, $G(t, t') = 0$

For
$$t > t'$$
, $\frac{\partial G(t,t')}{\partial t} + \beta G(t,t') = 0$, $G(t,t') = Ae^{-\beta t}$

For
$$t \sim t'$$
, $\int_{t'-\varepsilon}^{t'+\varepsilon} dt \left(\frac{\partial G(t,t')}{\partial t} + \beta G(t,t') \right) = \int_{t'-\varepsilon}^{t'+\varepsilon} dt \delta(t-t')$,

$$G\left(t'+\varepsilon,t'\right)-G\left(t'-\varepsilon,t'\right)=1,Ae^{-\beta t'}-0=1,A=e^{\beta t'}$$

Therefore,
$$G(t, t') = e^{\beta(t'-t)}\theta(t'-t)$$
.

For
$$t > t'$$
, $G(t, t') = 0$

For
$$t < t'$$
, $\frac{\partial G(t,t')}{\partial t} + \beta G(t,t') = 0$, $G(t,t') = Ae^{-\beta t}$

For
$$t \sim t'$$
, $\int_{t'-\varepsilon}^{t'+\varepsilon} dt \left(\frac{\partial G(t,t')}{\partial t} + \beta G(t,t') \right) = \int_{t'-\varepsilon}^{t'+\varepsilon} dt \delta(t-t')$,

$$G(t'+\varepsilon,t')-G(t'-\varepsilon,t')=1,0-Ae^{-\beta t'}=1,A=-e^{\beta t'}$$

Therefore,
$$G(t, t') = -e^{\beta(t'-t)}\theta(t-t')$$
.

Then
$$g(t, t') = e^{\beta(t'-t)}\theta(t'-t) - \left(-e^{\beta(t'-t)}\theta(t-t')\right) = e^{\beta(t'-t)}$$

It satisfies
$$\frac{\partial g(t,t')}{\partial t} + \beta g(t,t') = 0.$$

It satisfies
$$\frac{\partial g(t,t')}{\partial t} + \beta g(t,t') = 0$$
.
Note: $\theta(x-y) = 1$ if $x > y$, $\theta(x-y) = 0$ if $x < y$.

Using separation of variables: let $\psi\left(x,y\right)=X\left(x\right)Y\left(y\right)$ and insert it into the Helmholtz equation. $\frac{d^{2}X(x)}{dx^{2}}Y\left(y\right)+X\left(x\right)\frac{d^{2}Y(y)}{dy^{2}}+k^{2}X\left(x\right)Y\left(y\right)=0$. Divide it by $\psi\left(x,y\right):\frac{\frac{d^{2}X(x)}{dx^{2}}}{X\left(x\right)}=-\frac{\frac{d^{2}Y(y)}{dy^{2}}-k^{2}}{Y\left(y\right)}-k^{2}\equiv-k_{x}^{2},\frac{\frac{d^{2}Y(y)}{dy^{2}}}{Y\left(y\right)}=-(k^{2}-k_{x}^{2})\equiv-k_{y}^{2}$. The solution for these two equations will be $X\left(x\right)=A\cos\left(k_{x}x\right)+B\sin\left(k_{x}x\right)$, $Y\left(y\right)=$ $C\cos(k_u y) + D\sin(k_u y)$. The coefficients are determined by the boundary conditions $X(0) = X(L_x) = 0, Y(0) = Y(L_y) = 0$. You will get A = C = $0, k_x L_x = n_x \pi, k_y L_y = n_y \pi$ where n_x and n_y are integers. Therefore the normal modes will be $\psi(x,y) = E \sin(k_x x) \sin(k_y y)$ with $k_x = \frac{n_x \pi}{L_x}, k_y = \frac{n_y \pi}{L_y}$ and $k^2 = k_x^2 + k_y^2$. Here E can be determined by normalization condition

 $\int_0^{L_x} dx \int_0^{L_y} dy \psi\left(x,y\right)^2 = 1$ and you will get $E = \frac{2}{\sqrt{L_x L_y}}$. Therefore the normal modes are $\psi(x,y) = \frac{2}{\sqrt{L_x L_y}} \sin(k_x x) \sin(k_y y)$.

4.

Now prove $\int_0^R \int_0^{2\pi} u_{n1m1}^* \left(r,\phi\right) u_{n2m2} \left(r,\phi\right) d\phi r dr = C_{n1n2} \delta_{n_1n2} \delta_{m1m2}$ where $u_{nm} \left(r,\phi\right) = J_m \left(k_n^{(m)}r\right) e^{im\phi}$ and C_{n1n2} is a constant depends on n_1 and m_1 .

For $e^{im\phi}$, $\int_0^{2\pi} e^{-i(m_1-m_2)\phi} d\phi = 2\pi \delta_{m1m2}$.

For $J_m\left(k_n^{(m)}r\right)$, start from the Bessel's equations with $k_{n1}^{(m)}$ and $k_{n2}^{(m)}$

(a)
$$r \frac{d^2}{dr^2} J_m \left(k_{n1}^{(m)} r \right) + \frac{d}{dr} J_m \left(k_{n1}^{(m)} r \right) + \left(k_{n1}^{(m)2} r - \frac{m^2}{r} \right) J_m \left(k_{n1}^{(m)} r \right) = 0,$$

(b)
$$r \frac{d^2}{dr^2} J_m \left(k_{n2}^{(m)} r \right) + \frac{d}{dr} J_m \left(k_{n2}^{(m)} r \right) + \left(k_{n2}^{(m)2} r - \frac{m^2}{r} \right) J_m \left(k_{n2}^{(m)} r \right) = 0.$$

Multiply (a) by $J_m\left(k_{n2}^{(m)}r\right)$ and (b) by $J_m\left(k_{n1}^{(m)}r\right)$ and subract : $J_m\left(k_{n2}^{(m)}r\right)$ (a)—

 $J_m\left(k_{n1}^{(m)}r\right)(b)$:

$$J_{m}\left(k_{n2}^{(m)}r\right)\left(r\frac{d^{2}}{dr^{2}}J_{m}\left(k_{n1}^{(m)}r\right) + \frac{d}{dr}J_{m}\left(k_{n1}^{(m)}r\right)\right) - J_{m}\left(k_{n1}^{(m)}r\right)\left(r\frac{d^{2}}{dr^{2}}J_{m}\left(k_{n2}^{(m)}r\right) + \frac{d}{dr}J_{m}\left(k_{n2}^{(m)}r\right)\right) = \left(k_{n2}^{(m)2} - k_{n1}^{(m)2}\right)rJ_{m}\left(k_{n1}^{(m)}r\right)J_{m}\left(k_{n2}^{(m)}r\right)$$

$$J_{m}\left(k_{n2}^{(m)}r\right) \frac{d}{dr}\left(r\frac{d}{dr}J_{m}\left(k_{n1}^{(m)}r\right) - J_{m}\left(k_{n1}^{(m)}r\right) \frac{d}{dr}\left(r\frac{d}{dr}J_{m}\left(k_{n2}^{(m)}r\right)\right) = \left(k_{n2}^{(m)2} - k_{n1}^{(m)2}\right)rJ_{m}\left(k_{n1}^{(m)}r\right)J_{m}\left(k_{n2}^{(m)}r\right).$$
Integrating from $r = 0$ to $r = R$:

$$= \left(k_{n2}^{(m)2} - k_{n1}^{(m)2}\right) r J_m \left(k_{n1}^{(m)} r\right) J_m \left(k_{n2}^{(m)} r\right).$$

Integrating from
$$r = 0$$
 to $r = R$:
$$\int_{0}^{R} J_{m} \left(k_{n2}^{(m)} r \right) \frac{d}{dr} \left(r \frac{d}{dr} J_{m} \left(k_{n1}^{(m)} r \right) \right) dr - \int_{0}^{R} J_{m} \left(k_{n1}^{(m)} r \right) \frac{d}{dr} \left(r \frac{d}{dr} J_{m} \left(k_{n2}^{(m)} r \right) \right) dr \\
= \left(k_{n2}^{(m)2} - k_{n1}^{(m)2} \right) \int_{0}^{R} r J_{m} \left(k_{n1}^{(m)} r \right) J_{m} \left(k_{n2}^{(m)} r \right) dr.$$
Upon integrating by parts

RHS=
$$\left[J_{m}\left(k_{n2}^{(m)}r\right)r\frac{d}{dr}J_{m}\left(k_{n1}^{(m)}r\right)\right]_{0}^{R}-\left[J_{m}\left(k_{n1}^{(m)}r\right)\frac{d}{dr}\left(r\frac{d}{dr}J_{m}\left(k_{n2}^{(m)}r\right)\right)\right]_{0}^{R}=$$

0 because r guarantees a zero at the lower limit r=0 and $k_{n1}^{(m)}, k_{n2}^{(m)}$ are roots of J_m , that is, $J_m\left(k_{n1/n2}^{(m)}R\right)=0$.

LHS=
$$\left(k_{n2}^{(m)2} - k_{n1}^{(m)2}\right) \int_{0}^{R} r J_{m}\left(k_{n1}^{(m)}r\right) J_{m}\left(k_{n2}^{(m)}r\right) dr = 0.$$

If $m \neq n, \int_0^R r J_m\left(k_{n1}^{(m)}r\right) J_m\left(k_{n2}^{(m)}r\right) dr = 0$. This gives us orthogonality over the interval [0, R].

Now we have proved $\int_0^{2\pi} e^{-i(m_1 - m_2)\phi} d\phi = 2\pi \delta_{m1m2}$ and $\int_0^R r J_m\left(k_{n1}^{(m)}r\right) J_m\left(k_{n2}^{(m)}r\right) dr =$ $C'\delta_{n1n2}$ where C' normalized constant. Therefore, $\int_0^R \int_0^{2\pi} u_{n1m1}^*\left(r,\phi\right) u_{n2m2}\left(r,\phi\right) d\phi r dr = 0$ $C_{n1n2}\delta_{n_1n2}\delta_{m1m2}$.

Expand a function $f\left(r,\phi\right)$ in terms of $u_{nm}\left(r,\phi\right)$:

$$f(r,\phi) = \sum_{nm} d_{nm} u_{nm}(r,\phi)$$
 where $u_{nm}(r,\phi) = J_m\left(k_n^{(m)}r\right)e^{im\phi}$.

Using the orthogonal relation in problem4. $\int_0^R \int_0^{2\pi} u_{n1m1}^*\left(r,\phi\right) u_{n2m2}\left(r,\phi\right) d\phi r dr = C_{n1n2} \delta_{n_1n2} \delta_{m_1m_2}, \text{ we can get } d_{nm} = \frac{1}{C_{nm}} \int_0^R \int_0^{2\pi} u_{nm}^*\left(r,\phi\right) f\left(r,\phi\right) d\phi r dr. \text{ Insert this into } f\left(r,\phi\right), \text{ we will get}$

is into
$$f(r,\phi)$$
, we will get
$$f(r,\phi) = \sum_{nm} \left(\frac{1}{C_{nm}} \int_0^R \int_0^{2\pi} u_{nm}^* \left(r',\phi'\right) f\left(r',\phi'\right) d\phi' r' dr'\right) u_{nm}(r,\phi)$$

$$= \int_0^R \int_0^{2\pi} d\phi' r' dr' \left[\sum_{nm} \frac{1}{C_{nm}} u_{nm}^* \left(r',\phi'\right) u_{nm}(r,\phi)\right] f\left(r',\phi'\right).$$
Therefore, $\sum_{nm} \frac{1}{C_{nm}} u_{nm}^* \left(r',\phi'\right) u_{nm}(r,\phi) = \frac{1}{r} \delta\left(r-r'\right) \delta\left(\phi-\phi'\right).$