# TABLES IN MATHEMATICA <br> PHYS 374, Fall 2004 <br> T. Bing 

--"Vector" is to C++ as "table" is to Mathematica
--a table is a list of items between curly braces

## Generating a Table:

$\rightarrow$ Brute force: just type it in
$\rightarrow$ Table[expression as function of $\mathrm{j},\{\mathrm{j}$, minimum j , maximum j , step size $\}$ ]
$\rightarrow$ semicolon suppresses output
$\rightarrow$ Can make a table of tables (i.e. a matrix)
Table[ $\{\mathrm{j}, 2 * \mathrm{j}\},\{\mathrm{j}, 1,4,1\}]$

## Plotting Contents of a Table:

$\rightarrow$ sample $=$ Table[ $3 * \mathrm{j},\{\mathrm{j}, 2,14,3\}]$
$\rightarrow$ ListPlot[sample] and ListPlot[sample, PlotJoined $\rightarrow$ True]
$\rightarrow$ How to plot sample's data vs.20,50,80,110, and 140 instead of $1,2,3,4$, and $5 ?$

## Operating on Tables:

$\rightarrow 3+$ sample
$\rightarrow$ sample + sample
$\rightarrow$ sample*sample (remember "period" = matrix multiplication)
$\rightarrow$ sample/sample
$\rightarrow$ sample[[4]] references $4^{\text {th }}$ item...first item is index number 1
$\rightarrow$ Length[sample]
$\rightarrow$ Append[sample,7], Prepend[sample,7], and Insert[sample, 7,2]

## Loops:

$\rightarrow$ For $[\mathrm{j}=2, \mathrm{j} \leq$ Length[sample $], \mathrm{j}=\mathrm{j}+1$, sample[[j]] = sample[[j-1]]*3]

## Application:

Use Mathematica to numerically approximate the solution to $\mathrm{dy} / \mathrm{dt}=1.2 \mathrm{y}+.3$, over the interval $0 \leq t \leq 2.0$, subject to the initial condition $y(0)=4$. Use Euler's Method with a step size of one-thousandth of a second. Graph this approximate solution.

## More on Matrices:

$\rightarrow$ Inverse[], Det[], Tr[], Transpose[], Eigenvalues[], Eigenvectors[], Conjugate[]
$\rightarrow$ from Oct. 14 class:

