TABLES IN MATHEMATICA

PHYS 374, Fall 2004 T. Bing

--"Vector" is to C++ as "table" is to Mathematica --a table is a list of items between curly braces

Generating a Table:

- \rightarrow Brute force: just type it in
- \rightarrow Table[expression as function of j, {j, minimum j, maximum j, step size}]
- \rightarrow semicolon suppresses output
- \rightarrow Can make a table of tables (i.e. a matrix) Table[$\{j,2^*j\},\{j,1,4,1\}$]

Plotting Contents of a Table:

- \rightarrow sample = Table[3*j,{j,2,14,3}]
- \rightarrow ListPlot[sample] and ListPlot[sample, PlotJoined \rightarrow True]

 \rightarrow How to plot sample's data vs.20,50,80,110, and 140 instead of 1,2,3,4, and 5?

Operating on Tables:

- \rightarrow 3 + sample
- \rightarrow sample + sample
- \rightarrow sample*sample (remember "period" = matrix multiplication)
- \rightarrow sample/sample
- \rightarrow sample[[4]] references 4th item...first item is index number 1
- \rightarrow Length[sample]
- \rightarrow Append[sample,7], Prepend[sample,7], and Insert[sample,7,2]

Loops:

 \rightarrow For[j = 2, j \leq Length[sample], j = j + 1, sample[[j]] = sample[[j-1]]*3]

Application:

Use Mathematica to numerically approximate the solution to dy/dt = 1.2y + .3, over the interval $0 \le t \le 2.0$, subject to the initial condition y(0) = 4. Use Euler's Method with a step size of one-thousandth of a second. Graph this approximate solution.

More on Matrices:

 \rightarrow Inverse[], Det[], Tr[], Transpose[], Eigenvalues[], Eigenvectors[], Conjugate[] \rightarrow from Oct. 14 class: