--“Vector” is to C++ as “table” is to Mathematica
--a table is a list of items between curly braces

Generating a Table:

→ Brute force: just type it in
→ `Table[expression as function of j, {j, minimum j, maximum j, step size}]`
→ semicolon suppresses output

→ Can make a table of tables (i.e. a matrix)
 `Table[{j,2*j},{j,1,4,1}]`

Plotting Contents of a Table:

→ `sample = Table[3*j,{j,2,14,3}]`
→ `ListPlot[sample] and ListPlot[sample, PlotJoined→True]`

→ How to plot sample’s data vs. 20, 50, 80, 110, and 140 instead of 1, 2, 3, 4, and 5?

Operating on Tables:

→ `3 + sample`
→ `sample + sample`
→ `sample*sample` (remember “period” = matrix multiplication)
→ `sample/sample`
→ `sample[[4]]` references 4th item…first item is index number 1
→ `Length[sample]`
→ `Append[sample,7]`, `Prepend[sample,7]`, and `Insert[sample,7,2]`

Loops:

→ `For[j = 2, j ≤ Length[sample], j = j + 1, sample[[j]] = sample[[j-1]]*3]`
Application:

Use Mathematica to numerically approximate the solution to \(\frac{dy}{dt} = 1.2y + .3 \), over the interval \(0 \leq t \leq 2.0 \), subject to the initial condition \(y(0) = 4 \). Use Euler’s Method with a step size of one-thousandth of a second. Graph this approximate solution.

More on Matrices:

→ \(\text{Inverse[], Det[], Tr[], Transpose[], Eigenvalues[], Eigenvectors[], Conjugate[]} \)

→ from Oct. 14 class: