Homework 3

1) Express the function $f(t) = A\cos^3(\omega t)$ in the form of a Fourier series

$$f(t) = \sum_{n=-\infty}^{\infty} c_n e^{-i n\omega t}$$
. Explain why the series truncates, *i.e.* why $c_n = 0$ for $|n| > 3$.

2) This second problem is to get a feel for Fourier series. In class we argued that they were useful for smooth periodic functions. Here I want you to show that they are even useful to describe discontinuous functions where the approximation can do well except at the point of discontinuity. Consider the square wave:

$$f(t) = \begin{cases} +1 \text{ for } 0 \le Mod_1(t) < \frac{1}{2} \\ -1 \text{ for } \frac{1}{2} \le Mod_1(t) < 1 \end{cases} \text{ where } Mod_1(t) \text{ is the fractional part of } t, \text{ i.e.}$$

 $Mod_1(t) = t$ for $0 \le t < 1$, $Mod_1(t) = t - 1$ for $1 \le t < 2$, $Mod_1(t) = t - 2$ for $2 \le t < 3$, and so forth. Thus f(t) alternates between positive and negative one in a periodic manner with a period of unity.

- a) Assume f(t) can be written as a Fourier series of the form $f(t) = \sum_{n=-\infty}^{\infty} c_n e^{-i2\pi nt}$ and show that the c_n coefficients $c_n = \begin{cases} \frac{-2i}{n\pi} & \text{for } n \text{ odd} \\ 0 & \text{for } n \text{ even} \end{cases}$.
- b) Since f(t) is real we should have $c_{-n} = c_n^*$ verify that this true. Explain the significance of the fact the c_n coefficients are pure imaginary.
- c) Plot the exact expression and 4 approximations based on the Fourier series a truncation for n<2, n<4, n<6 and n<8. Comment on the apparent converngence. Where does the expansion do poorly and why?
- 3) Consider a particle of mass m moving in the following anharmonic potential:

$$U(x) = \frac{1}{2}kx^2 + \frac{1}{24}\alpha x^4$$
. The particle is released from rest at $x=A$ at $t=0$.

- a) Use energy conservation to determine the speed of the particle when it reaches x=0.
- b) Use the approximate expression based on Fourier analysis to determine the velocity at x=0. You should work at lowest nontrivial order (including the 3ω term in the expansion)
- c) Show that the two expressions derived in problem 3a) and 3b) are consistent, *i.e.* they differ only beyond the order calculated in the approximation

- d) Specify the condition on A for which you expect your answer in b) to be valid.
- 4) Consider a particle of mass m moving in the same anharmonic potential as in problem 3): $U(x) = \frac{1}{2}kx^2 + \frac{1}{24}\alpha x^4$. The particle is released from rest at x=A at t=0.
 - a) Derive an expression for the period of this system as a function of the amplitude using the energy conservation method described in class. The expression can be left in the form of an integral. Hint: how is the period related to the time it takes to go from –*A* to *A* where *A* is the amplitude?
 - b) Derive an approximate expression for the period as a function of the amplitude starting from the exact expression in part a). Your zeroth order result should give the period for the harmonic oscillator and corrections should grow with *A*. Hint: write the integral in terms of dimensionless variables.
 - e) Show that this answer is equivalent to the one found in class using Fourier methods, *i.e.* they differ only beyond the order calculated in the approximation