PHYS 374
Home work 1

Problem 1
The differential equation we're working with is d—'féﬂ = (v, — v(t)), with v, and) constant.

We wish to find a Taylor expansion for v(t) that will be nice for small times. Let v =
vo + Av; + A%vuy + ... up to second order. We can simply plug this into the differential
equation:

A
v =y + M) + A = ;(vt-vo—)\vl - Ay —...)
Then we group terms on the left by order in A

A A2 A3
vp + M) + A = ;(vt—vo)-—T—vl— U=

and since we’re working only to second order in )\, we can toss out the A3 term. The terms
on the left and right must match up by ), so we have (setting A = 1)

v — Y v
vp =0 U§=+(—'—T—ol ”§=—:;1’

All of these are easy to solve. By integration vy = k, with k a constant, and since at small
times the velocity ought to be close to the initial velocity, ¥ should be v;. So . We
can plug this into the DE for v;, and integrate, getting |v; = +£"‘—_T"i)3 , where we’re leaving

out the constant of integration, since it must be zero as we’ve already used up our initial
condition. Next, we plug our result into the last remaining DE, and integrate to obtain

Vo =‘1"‘2;T";'E3 where we again left out the constant of integration for the same reason.

The resulting series for v(t) up to terms of second-order is

(v — v}t (v — )t e

t) =
v(t) = v + T 272

(1)



Problem 2

We have two expansions for v(t), the one derived above, for small velocities, and the one
derived in class for small velocities. We can plot these two expansions, up to second order,
on a graph with the exact solution.

First, we set v, = % (as well as 7 = 1,v, = 1, to make Mathematica happy - but this
is just a choice of units). Since here the initial velocity is small compared to the terminal
velocity, we would expect our small time expansion to work nicely. Also, the small-time
expansion should work, as time starts out small.
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Both expansions work quite nicely, though the small-velocity expansions to stick closer
to the exact solution for longer. This is probably because elapsed time gets to 7 faster than
the velocity approaches v;, and we shouldn’t generally expect a small-time approximation to
work well when time gets to be on the order of 7.

Next, we set v; = 2v;, and do the same plot. Now, the initial velocity is big, compared to
vt, and the small-velocity ought to crash and burn in short order. The small-time expansion
ought to work, however, since time still starts out being small.
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Clearly, the small-velocity indeed sucks for these initial conditions. The small-time ex-
pansion does a bit better, but doesn’t seem particularly spectacular, either. It does perform
nicely as long as the time is small compared to 7 (which of course is all we can generally
expect).



Problem 3

Part a

The problem is to come up with an equation modeling an object falling through a medium
with a resistance that goes like the square of the velocity. There are two forces on such
on object, the force of gravity and the resistance force from the medium. If we call the
direction of the gravity force positive, the two forces look like mg and —pBv?, respectively,
where m is the mass of the object, g is the acceleration of gravity, § is a constant that
controls the strength of the resistance force. By Newton’s law, F' = mv’, so our model is

mv' = mg — fv?

Part b

The resistance force, being a force, has units of kg meters/sec?, and v? has units of meters’ sec.
Therefore 8 has to have units of kg/meters. Next, we want to find combinations of m, g, 8
that have units of velocity and time. At the terminal velocity, the force of gravity and the

resistance force must balance, so
m
mg = fvl = ‘/—ﬂg- =y

Next, g has units of meters/sec?, so since v; has units of meters/sec |7 = v;/g|= /5.

Part c

We start with
mv' = mg — Bv?

Dividing both sides by m and v;, we get
v\ _9_BY
Vs - (7 m U

Bv? _ @i(l’_y

m v, m v

Next, it’s clear that g/v; = >, and

Now, what's 227 Well,




So finally we have

which is what we needed to show.

Problem 4

Part a

Here the differential equation we’re dealing with is

() -2(--2(2))

Out of sloth, let’s just rename > towv (and propagate this change into all the v,’s and

whatnots), and just make sure to remember to change back later. What we’re looking for is
an expansion for v that’s good for low velocities. So we’re looking for the coefficients in an
equation that looks like this:

’U='Uo+/\'01+/\2’02+

Now, we can differentiate both sides of the above and plug in our known equation for v’ like
this:

1
vV =vy+ vy + A0+ ;(1—v2)=v{)+/\v{+/\20§+...
Let’s figure out what v? is:
= (vo + Av1 + A%02)? = v + A\(2uow1) + A2 +

(where anything of greater than second order got thrown out). Next we can slip this expres-
sion into our DE: we can expand v? and collect terms according to powers of

1 v2 Ayu; A% A2y

Ys + 0U1 + 0V2 + 1
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+..) = vy + M+ A+

Vo1

1
0=(v{,—;)+/\(v{ °)+/\2(v1+2 )+

and then since the left be zero term-by-term, we’ve found some differential equations all the
coefficients must satify. Namely,
v )' 1
(”t o T



(&) =-1(2).
(2).--2(2). (%),

where we've renamed all the v’s back to their original designations.

Part b

We now want to solve the differential equations in part a, imposing the below boundary

conditions at t = 0.
(” ) (Ui) (” ) (:i) 0
t/ 0 t t/1 t/ 2

These boundary conditions come from the idea that we’ve looking for a perturbative expan-
sion in velocity, and we want the zero-order term in that expansion to be close to how the
function looks near ¢ = 0, and another way of putting this is that we want the zero-order
term to actually be the initial velocity when ¢ = 0. At ¢ = 0, terms of order greater than
zero ought to vanish, so we declare that the first and second order terms be zero at ¢t = 0.

We can just integrate to get the zero-order term, so vy = } + k, with k£ a constant. We
want this to fit the BC above, so k = o. Therefore

(v) t V;
f— =_+_
Y%/ T U

Next, we can get the first-order term by plugging in the zero-order term and integrating, so,
using the lazy notation for a moment we have

1 1/t 2 1/ it t v
”i=—;'"3=-;(;+”") =‘;(ﬁ+2vf+”?)=‘ﬁ" o

So by integrating, we get

o = Y ik
T 2 T
and since v1(0) =0,k =0 so
2 yt? v
VY =—g - — — —
3 7t T
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And now after some nasty algebra,

P t N 4u;t3 3 2v3t? X vt
27 0\35 T 3t 73 73

and after we integrate, with the constant of integration being zero since v,(0) = 0

. — 205 2utt 4t o2
27 1505 " 314 33 72

Switching back to the original notation and summing up, we've found that
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