
PHYS 373 (Spring 2015):
Mathematical Methods for Physics II

Summary of topics/formulae for 2nd Mid-term exam

Chapter 7 of Boas (Fourier Series and Transforms)

1. General Fourier series: a function f(x) with period 2l can be expanded as

f(x) =
a0
2

+
∞∑
1

(
an cos

nπx

l
+ bn sin

nπx

l

)
(1)

=
∞∑
−∞

cne
inπx/l (2)

where the Fourier coefficients are given by

an =
1

l

∫ l

−l
f(x) cos

nπx

l
dx (3)

bn =
1

l

∫ l

−l
f(x) sin

nπx

l
dx (4)

cn =
1

2l

∫ l

−l
f(x)e−inπx/ldx (5)

2. Special Fourier series: we have

if f(x) is odd,

{
bn = 2

l

∫∞
0
f(x) sin nπx

l
dx

an = 0
(6)

if f(x) is even,

{
an = 2

l

∫∞
0
f(x) cos nπx

l
dx

bn = 0
(7)

3. Paserval’s theorem for Fourier series:

The average of |f(x)|2 (over a period) =

(
1

2
a0

)2

+
1

2

∞∑
1

a2n + +
1

2

∞∑
1

b2n (8)

=
∞∑
−∞

|cn|2 (9)

4. General Fourier transform

f(x) =

∫ ∞
−∞

g(α)eiαxdα (10)

where

g(α) =
1

2π

∫ ∞
−∞

f(x)e−iαxdx (11)

1



5. Special Fourier transform: for an odd function, we have

fs(x) =

√
2

π

∫ ∞
0

gs(α) sinαx dα (12)

gs(α) =

√
2

π

∫ ∞
0

fs(x) sinαx dx (13)

Similarly, for an even function:

fc(x) =

√
2

π

∫ ∞
0

gc(α) cosαx dα (14)

gc(α) =

√
2

π

∫ ∞
0

fc(x) cosαx dx (15)

(16)

6. Paserval’s theorem for Fourier transform:∫ ∞
−∞
|g(α)|2dα =

∫ ∞
−∞

1

2π
|f(x)|2dx (17)

Chapter 3 of Boas (Linear Algebra)

1. n-dimensional vector-space:

A.B (inner product) =
n∑
1

AiBi (18)

A (norm) =
√

A.A (19)

A and B are orthogonal if A.B = 0 (20)

2. vector-space of functions on a ≤ x ≤ b:

Inner product of A(x) and B(x) =

∫ b

a

A∗(x)B(x)dx (21)

Norm of A(x) =

√∫ b

a

A∗(x)A(x)dx (22)

A(x) and B(x) are orthogonal if

∫ b

a

A∗(x)B(x)dx = 0 (23)

3. Gram-Schmidt method for making a basis (A, B, C...) orthonormal:

e1 =
A

A
(24)

e2 = normalized
[
B− (e1.B) e1

]
(25)

e3 = normalized
[
c− (e1.C) e1 − (e2.C) e2

]
(26)
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Chapter 12 of Griffiths (Series Solutions of Differential Equations)

1. Series method for solving (linear) ordinary differential equations (ODE): assume a
solution of the form (with a’s being coefficients to be found)

y =
∞∑
n=0

anx
n (27)

giving

y′ =
∞∑
n=0

nanx
n−1 (28)

y′′ =
∞∑
n=0

n(n− 1)anx
n−2 (29)

Plug the above series into each term of the ODE. Find the total coefficient of each
power of x on each side of ODE and equate them (again, for each power of x). This
will give the higher a coefficients in terms of lower ones.

2. Legendre’s equation: (
1− x2

)
y′′ − 2xy′ + l(l + 1)y = 0 (30)

has a solutions for each integer l (chosen to be non-negative) which is called the Leg-
endre polynomial, PL(x) defined with

Pl(1) = 1 (31)

For example,

P0(x) = 1, P1(x) = x, P2(x) = 1
2

(3x2 − 1) , P3(x) = 1
2

(5x3 − 3x) ... (32)

3. Rodrigues’ formula for Legendre polynomials

Pl(x) =
1

2ll!

dl

dxl
(
x2 − 1

)l
(33)

4. Generating function for Legendre polynomials:

Φ(x, h) =
(
1− 2xh+ h2

)−1/2
, |h| < 1 (34)

=
∞∑
l=0

hlPl(x) (35)

3



5. Recursion relations for Legendre polynomials:

lPl(x) = (2l − 1)xPl−1(x)− (l − 1)Pl−2(x), (36)

xP ′l (x)− P ′l−1(x) = lPl(x), (37)

P ′l (x)− xP ′l−1(x) = lPl−1(x), (38)(
1− x2

)
P ′l (x) = lPl−1(x)− lxPl(x), (39)

(2l + 1)Pl(x) = P ′l+1(x)− P ′l−1(x), (40)(
1− x2

)
P ′l−1(x) = lxPl−1(x)− lPl(x) (41)

6. Orthogonality of Legendre polynomials:∫ 1

−1
Pl(x)Pm(x)dx = 0, unless l = m (42)

7. Normalization of Legendre polynomials:∫ 1

−1

[
Pl(x)

]2
=

2

2l + 1
(43)

(44)

8. A function defined over the interval (−1, 1) can be expanded in a Legendre series

f(x) =
∞∑
l=0

clPl(x) (45)

(46)

where

cm =
2m+ 1

2

∫ 1

−1
f(x)Pl(x)dx (47)

9. Associated Legendre functions:

Pm
l (x) =

(
1− x2

)m/2 dm

dxm
Pl(x) (48)

satisfy the equation

(
1− x2

)
y′′ − 2xy′ +

[
l(l + 1)− m2

1− x2
]
y = 0 (49)

For each m, they a set of orthogonal functions on (−1, 1), with normalization:∫ 1

−1

[
Pm
l (x)

]2
dx =

2

2l + 1

(l +m)!

(l −m)!
(50)
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10. Bessel equation

x2y′′ + xy′ +
(
x2 − p2

)
y = 0 (51)

has solutions (Bessel functions):

Jp(x) =
∞∑
n=0

(−1)n

Γ(n+ 1)Γ(n+ 1 + p)

(x
2

)2n+p
(52)

and

Np(x) =
cos(πp)Jp(x)− J−p(x)

sinπp
(53)

11. Asymptotic values:

J0(0) = 1 (54)

Jn6=0(0) = 0 (55)

Jn=0,1,2...(∞) = 0 (56)

12. Recursion relations for Bessel functions

d

dx

[
xpJp(x)

]
= xpJp−1(x) (57)

d

dx

[
x−pJp(x)

]
= −x−pJp+1(x) (58)

Jp−1(x) + Jp+1(x) =
2p

x
Jp(x) (59)

Jp−1(x)− Jp+1(x) = 2J ′p(x) (60)

J ′p(x) = −p
x
Jp(x) + Jp−1(x) =

p

x
Jp(x)− Jp+1(x) (61)

13. Other equations with Bessel function solutions

y′′ +
1− 2a

x
y′ +

[ (
bcxc−1

)2
+
a2 − p2c2

x2

]
y = 0 (62)

has the solution

y = xaZp (bxc) , where Z = J, N (63)

and

y = Jp(Kx) and Np(Kx) (64)

satisfy the equation

x (xy′)
′
+
(
K2x2 − p2

)
y = 0 (65)
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14. Orthogonality of Bessel functions:∫ 1

0

xJp(αx)Jp(βx) =

{
0 if α 6= β,
1
2
J2
p+1(α) = 1

2
J2
p−1(α) = 1

2
J ′ 2p (α) if α = β

(66)

where α and β are zeroes of Jp(x).

Chapter 13 of Boas (Partial Differential Equations)

1. Laplace equation in two-dimensional rectangular/Cartesian coordinates (for example,
for steady-state temperature):

∂2

∂x2
T (x, y) +

∂2

∂y2
T (x, y) = 0 (67)

has basis functions (i.e., general solution is a suitable combination of these):

T (x, y) =

{
ekx

e−kx

}{
sin ky
cos ky

}
or

{
sin kx
cos kx

}{
eky

e−ky

}
(68)

2. Diffusion equation in one dimension

∂2u

∂x2
=

1

α2

∂u

∂t
(69)

has basis functions

u = e−k
2α2t

{
sin kx
cos kx

}
(70)

3. Schroedinger equation in one dimension for a free particle (i.e., no potential):

− h2

2m

∂2Ψ

∂x2
= ih

∂Ψ

∂t
(71)

has basis functions

Ψ =

{
sin kx
cos kx

}
e−iEt/h (72)

4. Wave equation in circular coordinates:

1

r

∂

∂r

(
r
∂z

∂r

)
+

1

r2
∂2z

∂θ2
=

1

v2
∂2z

∂t2
(73)

has basis functions:

z =

{
Jn(Kr)
Nn(Kr)

}{
sinnθ
cosnθ

}{
sinKvt
cosKvt

}
(74)
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5. Laplace equation in spherical coordinates

1

r2
∂

∂

(
r2
∂u

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂u

∂θ

)
+

1

r2 sin2 θ

∂2u

∂φ2
= 0 (75)

has basis functions (where l is a non-negative integer, with −l ≤ m ≤ +l)

u =

{
rl

r−l−1

}
Pm
l (cos θ)

{
sinmφ
cosmφ

}
(76)

Chapter 14 of Boas (Functions of a Complex Variable)

1. Basics of complex-valued functions of complex variable

f(z) = f(x+ iy) = u(x, y) + iv(x, y) (77)

f ′(z) = df
dz

=
lim

∆z → 0
∆f

∆z
(78)

2. If f(z) is analytic in a region (i.e., has a unique derivative at every point), then

∂u

∂x
=

∂v

∂y
, (79)

∂v

∂x
= −∂u

∂y
(80)

(Cauchy-Reimman conditions) and it’s converse: if u(x, y) and v(x, y) satisfy these
conditions, then f(z) = u+ iv is analytic.

3. If f(z) is analytic in a region R, then it has derivatives of all orders at points inside R
and thus it can be expanded in a Taylor series about any point z0 in R. This power
series converges inside circle C about z0 that extends to the nearest singularity point
(i.e., C just touches the boundary of R).

4. If f(z) = u+iv is analytic in a region, then u and v satisfy (two-dimensional) Laplace’s
equation in the region. And, conversely, any function u (or v) satisfying Laplace’s
equation is the real (or imaginary) part of an analytic function f(z).

5. Cauchy’s theorem: if f(z) is analytic inside and on a closed curve C, then∫
f(z)dz = 0, around C (81)

6. Cauchy’s integral formula: if f(z) is analytic inside and on a closed curve C, then

f(a) =
1

2πi

∫
f(z)

z − a
dz, around C (82)

where z = a is a point inside C.
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7. Laurent series: Let C1 and C2 be two circles with center at z0. If f(z) is an anlaytic
function in the region R between C1,2, then it can be expanded in a convergent series
in R

f(z) = a0 + a1 (z − z0) + a2 (z − z0)2 + ...+
b1

z − z0
+

b2

(z − z0)2
+ ... (83)

associated with which are the following definitions:

(i) If all the b’s are zero, then f(z) is analytic at z = z0 (regular point);

(ii) If bn 6= 0, but all the subsequent b’s are zero, then f(z) is said to have a pole of
order n a z = z0. If n = 1 here, then f(z) has a simple pole at z = z0;

(iii) If there are infinite number of b’s which are different than zero, then f(z) has an
essential singularity at z = z0;

(iv) The coefficient b1 of 1/ (z − z0) is called the residue of f(z) at z = z0.

8. Residue theorem:∫
f(z)dz (around C) = 2πi. (sum of residues of f(z)inside C) (84)

where we go counter-clockwise around C.

9. Methods of finding residues of f(z):

(A) coefficient b1 in Laurent series about z = z0;

(B) Simple pole:

R (z0) =
lim

z → z0 (z − z0) f(z) (85)

and if f(z) = g(z)/h(z), then

R (z0) =
g (z0)

h′ (z0)
if

{
if g (z0) = finite const.
h (z0) = 0, h′ (z0) 6= 0

(86)

(C) Multiple poles: multiply f(z) by (z − z0)m, where m is an integer ≥ n (order
of pole), differentiate the result (m − 1) times, divide by (m − 1)!, and evaluate the
resulting expression at z = z0.

10. Definite integrals using residue theorem:

(i) Change of variables;
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(ii) If P (x) and Q(x) are polynomials with degree of Q ≥ degree of P + 2 and if Q has
no real zeroes, then∫ ∞

−∞

P (x)

Q(x)
= 2πi.

(
sum of residues of

P (z)

Q(z)
in upper half-plane

)
(87)

(iii) If P (x) and Q(x) are polynomials with degree of Q ≥ degree of P + 1 and if Q
has no real zeroes, then∫ ∞

−∞

P (x)

Q(x)
eimx = 2πi.

(
sum of residues of

P (z)

Q(z)
eimz in upper half-plane

)
(88)

where m > 0.

(iv) Poles on boundary:

∫
f(z)dz (around C) = 2πi. (sum of residues at simple poles inside C+

1

2
sum of residues of poles on the boundary

)
(89)

(v) Branch cuts: for integrals involvong fractional powers (or logarithm) of x (and
thus z), we have to choose contour such that we stay on one branch of the fractional
power (say, angle of z between 0 and 2π) so that the function is single-valued.

(vi) Argument principle:

N − P = 1
2πi

∫ f ′(z)
f(z)

dz (around C) =
1

2π
ΘC (90)

where N and P are the number of zeroes and poles, respectively, of f(z) inside C and
ΘC is the change in angle of f(z) around C.

11. Nature of f(Z) at Z =∞: it is a pole of order 2 if f (1/z) is the same at z = 0 etc.

12. Residue at infinity:

(residue of f(Z)at Z =∞) = −
(

residue of
1

z2
f

(
1

z

)
at z = 0

)
(91)

Chapter 8 of Boas (Dirac δ and Green’s functions)
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1. Properties of Dirac δ-function:

δ (t− t0) = 0, for t 6= t0 (92)

∫ t0+ε

t0−ε
δ (t− t0) dt = 1 (93)

∫ b

a

φ(t)δ (t− t0) dt =

{
φ (t0) for a < t0 < b

0 otherwise
(94)

2. Green’s function is response of system to unit impulse. For example, suppose we want
to solve:

y′′ + ω2y = f(t), y0 = y′0 = 0 (95)

where f(t) is some (given) forcing function. Then, the Green’s function is defined by

d2

dt2
G (t, t′) + ω2G (t, t′) = δ (t− t′) (96)

(with the same initial conditions) and solution to original equation, i.e., (95), is given
by

y(t) =

∫ ∞
0

f (t′)G (t, t′) dt′ (97)

The idea is general: in the specific case, solving Eq. (96) gives

G (t, t′) =

{
0 0 < t < t′,
1
ω

sinω (t− t′) , 0 < t′ < t
(98)
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