
PHYS 373 (Fall 2021): Mathematical Methods for
Physics II
Final exam: Monday, December 20, 1.30-3.30 pm.

Read the instructions below and do not flip to next page till you are told to do
so.
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It is necessary to show the details of the derivation and not just the final answer
for all problems.

This is a closed book exam: crib sheets are not allowed.

In case they are needed, more blank paper and stapes are provided.

Please write clearly and if you use the backside of a page, then please indicate
so.

Check that there are total of 6 pages (containing 6 problems).

Note that some problems have multiple parts; so, please read the statement of
each problem carefully.

Remember the honor pledge that you signed at the start of the semester.
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Problem # Points scored Maximum points

1 8
2 14
3 8
4 8
5 12
6 10

Total 60
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