Modes of Oscillation

The number of modes of oscillation available to electromagnetic waves in a cavity was central to the derivation of the Rayleigh-Jeans equation. To see how the number of modes per unit volume in the wavelength range between λ and $\lambda + \Delta\lambda$ is determined in general, let’s first consider the one-dimensional case of the allowed standing waves on a string of length L, for example, a guitar or violin string, stretched between two points A and B along the x axis as in Figure MO-1a. Standing waves can be established only for those vibrational frequencies f for which the length L corresponds to an integral number n_x of half-wavelengths (see Figure MO-1b):

$$L = n_x \frac{\lambda}{2} \implies n_x = \frac{2L}{\lambda} \quad \text{MO-1a}$$

The question then is how many of these modes exist in the wavelength range between λ and $\lambda + \Delta\lambda$. If L is large compared with $\Delta\lambda$, then

$$\Delta n_x = \frac{2L \Delta\lambda}{\lambda^2} \quad \text{MO-1b}$$

The minus sign tells us that, as n_x decreases, $\Delta\lambda$ increases. In addition, the elements of the string can vibrate in any direction in the plane perpendicular to the string, so there are two degrees of freedom for each mode. Thus, we can write for Δn_x, the number of modes per unit volume,

$$\Delta n_x = \frac{4\Delta\lambda}{\lambda^2} \quad \text{MO-2}$$

where L is the “volume” in one dimension.

The description becomes more complex in two and in three dimensions. Figure MO-2 shows a square with sides of length L lying in the xy plane. The edges are perfect reflectors, analogous to the nodal points A and B for the one-dimensional string in Figure MO-1. Rays representing four electromagnetic waves with $\mathbf{\varepsilon}$ perpendicular to the plane of the diagram are shown reflecting at points α, β, γ, and δ. Like the waves on the vibrating string, the four waves will form a set of standing waves only if the frequency f is such that there is an integral number of half-wavelengths in both the x and y directions in each of the four waves. The boundary condition at the reflecting walls is $\mathbf{\varepsilon} = 0$, yielding allowed solutions to the wave equation for each wave

$$E(z) = C(z, L) \sin \frac{n_x \pi x}{L} \sin \frac{n_y \pi y}{L} \quad \text{MO-3}$$

where $C(z, L)$ is a constant and n_x and n_y are integers. For example, the wave moving from β to γ is along the hypotenuse of a 3-4-5 right triangle. Thus, the angle $\theta = 37^\circ$, the angle $\varphi = 53^\circ$, and λ_x and λ_y, the x and y components of λ, are given by

$$\lambda_x = \lambda / \cos \theta$$
Substituting \(n_x \) and \(n_y \) from the appropriate versions of Equation MO-1, we see that

\[
\sin(n_x \pi x/L) = \sin\left(\frac{2\pi x}{\lambda_x}\right)
\]

Therefore,

\[
\frac{n_x \pi}{L} = \frac{2\pi}{\lambda_x} = \frac{2\pi \cos \theta}{\lambda}
\]

Similarly,

\[
\sin(n_y \pi y/L) = \sin\left(\frac{2\pi y}{\lambda_y}\right)
\]

Therefore,

\[
\frac{n_y \pi}{L} = \frac{2\pi}{\lambda_y} = \frac{2\pi \cos \varphi}{\lambda}
\]

Solving Equations MO-5 and MO-6 for \(n_x \) and \(n_y \), respectively, squaring, and then adding the results gives

\[
n_x^2 + n_y^2 = \frac{4L^2}{\lambda^2}(\cos^2 \theta + \sin^2 \theta) = \frac{4L^2}{\lambda^2}
\]

which gives the allowed wavelengths.

The above method of describing the possible standing waves in a square can be extended to a cube in three dimensions. Depicting a set of standing waves in a three-dimensional cube analogous to the square in Figure MO-2 on this two-dimensional surface is not especially helpful (there are now eight waves in the set); however,
note that an additional angle χ and integer n_z are involved. Equation MO-8, a condition equivalent to Equations MO-5 and MO-6, also applies:

$$\frac{n_z \pi}{L} = \frac{2\pi \cos \chi}{\lambda} \quad \text{MO-8}$$

Again, solving for n_z, squaring, and adding the squares yields for three dimensions

$$n_x^2 + n_y^2 + n_z^2 = \frac{4L^2}{\lambda^2} (\cos^2 \theta + \cos^2 \varphi + \cos^2 \chi) \frac{4L^2}{\lambda^2} = \frac{4L^2}{\lambda^2} \quad \text{MO-9}$$

where n_x, n_y, n_z are all integers and λ are the allowed wavelengths.

The possible combinations of $n_x, n_y,$ and n_z are at the corners of cubes in the positive octant of a sphere in n-space as illustrated in Figure MO-3. The number of possible combinations within a volume of radius r corresponds to the number of modes n for possible wavelengths λ larger than a given value λ_{min}, where $r = 2L/\lambda_{\text{min}}$. Thus, we obtain

$$n = \left(\frac{4}{3} \pi r^3\right) \times \frac{1}{8} = \left(\frac{4}{3} \pi \frac{8L^3}{\lambda^3}\right) \times \frac{1}{8} = \frac{4\pi L^3}{3\lambda^3} \quad \text{MO-10}$$

The number of modes with wavelengths between λ and $\lambda + d\lambda$ is given by

$$dn = \frac{4\pi L^3}{\lambda^3} d\lambda \quad \text{MO-11}$$

where we have ignored the minus sign arising from the differentiation; that is, we are considering dn and $d\lambda$ both as positive (see the comment following Equation MO-1b). Dividing by the volume L^3 and noting that each allowed wavelength has two possible polarizations, we obtain the number of modes per unit volume with wavelengths between λ and $\lambda + d\lambda$:

$$n(\lambda) d\lambda = \frac{8\pi}{\lambda^3} d\lambda \quad \text{MO-12}$$

Since $c = f\lambda$ and $d\lambda = (c/f^2) df$, again ignoring the minus sign, the number of modes per unit volume with frequencies between f and $f + df$ is

$$g(f) = \frac{8\pi f^2}{c^3} df \quad \text{MO-13}$$