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Experiment VI:  
The LRC Circuit and Resonance 
 
I.  References  
 
Halliday, Resnick and Krane, Physics, Vol. 2, 4th Ed., Chapters 38,39 
Purcell, Electricity and Magnetism, Chapter 7,8 
 
II.  Equipment  
 
Digital Oscilloscope   Digital Multimeter   
Signal Generator   0.01μF Capacitor 
Differential Amplifier   100 mH Inductor (2) 
Circuit Breadboard   1 kΩ Resistor 
 
III.  Introduction  
 
We are now ready to introduce one of the most important components of a radio, the AC LRC 
circuit.  With both an inductor and capacitor in the same circuit, an LRC circuit essentially acts 
as a bandpass filter, a filter that only allows a narrow range of frequencies to pass.  When tuned 
to the frequency of a particular radio station, it allows that station’s signal to pass at the 
exclusion of all others.  The characteristics of the “tuner” in a radio, including it’s Q value, are 
critical to it’s performance. 
 
IV.  Background and theory 
 
Figure VI-1 shows a circuit with driving voltage )cos()( 0 tVtV ω=  connected in series with a 
resistor, inductor, and capacitor.  In this circuit, the resistance R includes every known resistance 
in the circuit, which can come from the internal resistance of the generator, the resistance of the 
inductor, and any real resistors connected. 
 

 
 
Figure VI-1:  LRC circuit driven by a sine wave input. 
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As before, we analyze the current in the circuit by using Kirchoff’s laws for complex resistances.  
The equivalent complex resistance is given by the series addition of R, XL = ωL, and XC=1/ωC: 
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We can then find the current in the circuit using : 
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The current will therefore have an amplitude )(ωI , which is a function of the frequency: 
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and which has its maximum at the resonance condition: 
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which is also when XC = XL.  The resonance frequency ω =ω0 is when 1/ω0C = ω0L, or 
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Figure VI-2 shows the plot of the phase angle φ vs. ω/ω0.  Note that when the frequency is very 
low, XL→ 0 and XC → ∞, so tanφ → −∞ and -φ → −π/2.  At very high frequencies, XC → 0 and 
XL → ∞, so tanφ → +∞, and φ → +π/2.  At resonance, XL = XC, ω =ω0, tanφ → 0, and φ → 0 (no 
phase shift). 
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Figure VI-2:  Behavior of the phase shift as a function of frequency. 
 
Another feature is that at very low (high) frequencies, either XC (XL) gets very large, which 
increases the impedance Z, causing the amplitude of the current to become very small.  
Somewhere between low and high frequency is a resonance frequency ω0, at XC = XL. The plot of 

 vs. ω will therefore have a maximum at the “resonance frequency” ω = ω0, as shown in 
figure VI-3. 
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Figure VI-3: Behavior of the current as a function of frequency, showing a resonance peak. 
 
The width of the resonance, ∆ω, is defined as the difference between the two angular frequencies 
ω+ and ω−, which are defined as those frequencies at which the amplitude of the current is 

2MAXI .  These two angular frequencies can be calculated using equations VI-4 and VI-5: 
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One has to be careful taking the square root of both sides.  If we define 1±=α , then 
 

RCL α+C=C . 
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Using the equations XL ≡ ωL,  XC  ≡ 1/ω C, defining τL = L/R , and LC10 ≡ω  we get the 
quadratic equation 
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which has the solutions 
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The negative sign here is unphysical since it produces negative frequencies, so we only take the 
positive solution.  But the coefficient a can be either +1 or –1, which gives us the two solutions 
ω±: 
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The width ∆ω is the difference between the two:  
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So the width of the resonance depends only upon L and R.  However, remember that the resonant 
frequency ω0 also depends on L (and C).  So the resonant frequency and the width of the 
resonance are linked by the value of the inductance used in the circuit.  A more useful quantity is 
the “Quality factor”  
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This quantity is essentially the ability of the circuit to limit the flow of high current to a small 
band of frequencies about the resonance frequency ω0.  As , the current flowing through 
the circuit will never be large and a large range of frequencies will behave in the same way.  As 
Q → ∞, the circuit will resonate only for frequencies that are near the resonance frequency and 
the current through the circuit can become large.  This type of resonant behavior is found to be 
extremely useful for things like radio reception, where a receiver LCR circuit can be tuned to a 
particular radio transmission frequency, eliminating interference from frequencies nearby.   
 
Combining the above equations gives: 
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Using this definition of  we can rewrite equation VI-1 as: 
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This equation shows explicitly that for a large , the current will be very small (“off resonance”, 
, therefore  will be very large) except at the resonance frequency ω =ω0 (where 

). 
 
Knowing the current I(t) we can calculate the voltage drops across the various components.  The 
voltage drop across any resistor RR (we use this notation to distinguish between a real resistive 
element RR and a total resistance R): 
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We see from this equation that VR(t) is out of phase with respect to the driving (input) voltage 
V(t) by an amount φ which can be either positive or negative according to whether the angular 
frequency is less than or greater than the resonance angular frequency ω0 as seen by equation VI-
2.  At resonance,  (total resistance in the circuit) and φ=0, which gives 
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in phase with the input signal and reduced by an amount which depends upon the “other” 
resistive elements in the circuit. 
 
Turning to the capacitor C and inductor L, the voltage drops are: 
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and 
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Using XL ≡ ωL, XC ≡ 1/ω C, RLL ≡τ , and LC10 ≡ω we can write 
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to get the following set of equations for the voltage drop across the resistor RR, the inductor L, 
and the capacitor C: 
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Figure VI-4 shows the voltages as a function of ωt.   The input voltage VIN (dot dashed line) 
starts at V0 when t=0.  The voltage drop across the resistor VR is offset by the phase angle φ = 0.5.  
Since in this case φ is positive, VR lags VIN.  The voltage across the capacitor VC and inductor VL 
are shown as dashed and solid lines respectively.  Note that these are completely out of phase 
with each other, and both are out of phase with respect to VR (by an amount ±π/2).   
 

 
 
 
Figure VI-4:  Behavior of the voltages across the various circuit elements.  Note that all 
waveforms have the same frequency. 
 
Notice that the amplitudes for VC and VL are both greater than that for VIN.  To understand what is 
going on, consider what happens at resonance where XL=XC, ω=ω0, and φ = 0.  The equations for 
the voltage drops are 
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Written this way, we can clearly see that at resonance, the amplitude for VL and VC are 
proportional to the driving amplitude V0 and Q, which is “tuned” to be as large as possible. 
Figure VI-5 shows the corresponding curves.  Notice that VR is in phase with VIN, but with a 
slightly lower amplitude.  This is because VR is proportional to the voltage drop across the 
resistor RR, whereas the impedance Z takes into account the total real resistance (R) in the circuit.  
For these cases, RR is taken to be 80% of the total resistance R. 
 

 
 
Figure VI-5: Voltages when the circuit is resonant 
 
The large amplitudes for VL and VC can be understood by turning to classical mechanics.  
Imaging a mass m on a spring with spring constant k, driven by an external driving force F(t) at 
some angular frequency ω.  The equation of motion is: 

kxxmtF += )(  
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where x measures the displacement from equilibrium. The system will oscillate with greatest 
amplitude when ω=ω0 with ω0, the natural frequency given by ω0= mk / .  Now, add a piece of 
cardboard attached to the mass, with a large area such that wind resistance comes into play.  The 
wind resistance force will be proportional to the velocity, which modifies the equation of motion 
to be: 
 

xbkxxmtF  ++=)(  
The wind resistance is a “damping” term xb : all energy will be lost only through this term, not 
from the “inertial” term xm  or the “elastic” term .  In words, the equation of motion is then: 
 
Driving Force ( ) = inertial term ( xm  ) + elastic force ( ) + damping force ( xb ) 
 
Now turn back to the RLC circuit, and use Kirchoff’s law with regards to voltages around the 
loop and write the differential equation: 
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where q  is the charge on the capacitor plate and I  = q .  We can then equate VL with the inertial 
term (inertia involved in building up the magnetic field inside the inductor), VC with the “elastic” 
term (the elasticity involved in moving an equal and opposite charge on and off the plates of a 
capacitor) and VR with the “damping” term (the resistor dissipates energy whether the current 
goes in one end and out the other or vice versa).  All energy is dissipated through the resistor.  
Note that in any mechanically oscillating system, it is quite natural for the resonance oscillations 
to be larger in amplitude than the driving force: energy is being added to the system little by 
little, dissipation is minimal, and the energy causes the total oscillation amplitude to build up.  
The classic example of this mechanical system is a person on a swing, being pushed.  The 
pushing (F(t)) amplitude need not be large compared to the oscillation, the system builds up a lot 
of energy at resonance. 
 
IV.  The AC LRC circuit 
 
 
Part A:  Initial Setup 
 
A-1:  Set up a circuit with an inductor, resistor and capacitor in the loop as in Fig. VI-1.  For 
components, start with a 1 kΩ resistor, a 0.01 µF capacitor, and the 200 mH inductor.  As input, 
use a 2 kHz sine wave with a maximum amplitude of about 1.5 V.  If necessary, eliminate any 
DC offset of the input voltage by using the DC offset adjust.   
 
For all measurements, be sure that all inputs to the oscilloscope are DC coupled. 
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A-2:  Measure the values of L and C using the LCR meter.  Measure the value of the resistor RR 
and the resistance of the inductor (RL) using the digital multimeter.  (The inductor consists of a 
wound wire which has some small resistance that will affect the total resistance of the circuit.)  
Determine the total resistance of the circuit, R = RR + RL + R0, where R0 is the internal resistance 
of the waveform generator (which is 50 ± 2 Ω).  From these measured values, determine the 
resonance (angular) frequency ω0 and the gain Q.  
 
Part B:  Resonant frequency and Q value from voltages 
 
B-1:  Look at the input voltage V0 and the voltage across the resistor, VR, on the oscilloscope.  
Be sure to pay attention to where “ground” is located in your circuit and use the instrumentation 
amplifier if necessary.  Determine the resonant frequency f0 = ω0/2π by looking for the frequency 
at which the phase shift φ goes to 0.  Estimate the uncertainty in f0 from your estimate of how 
well you can determine the zero crossing. 
 
B-2:  Measure the amplitude of VR at the resonant frequency, and then find the two frequencies 
f± at which the amplitude drops to 2/1  of its maximum value.  Record these two frequencies, 
and compute the width ∆ω = ω+ − ω− of the resonance.  From the width and the determination of 
ω0, determine the Q value and its uncertainty.  Compare this value to what you got in part A, and 
comment on any discrepancy. 
 
Part C:  Amplitude and phase vs. frequency 
 
C-1:  Vary the input frequency using the following values: 
 

f = f0 × (0.1, 0.3, 0.5, 0.7, 0.9, 0.95, 1.0, 1.05, 1.075, 1.1, 1.3, 1.5, 1.7, 1.9, 2.0, 2.3) 
 
and use your measured f0 from B-1 in the above formula.  For each value, record the amplitudes 
of V0, VR, as well as the frequency f and the phase shift φ (from the time shift of the zero 
crossings) between V0 and VR (keep track of the sign!).  For the frequencies highlighted in bold, 
also record VC and VL. 
 
C-2:  Looking at the data taken in Part C-1, how does VL-VC vary with frequency?  Also, 
describe the relationship between V0 and VR as a function of frequency.   
 
C-3:  Plot the phase shift φ vs. ω.  From the zero crossing of this graph, determine the resonant 
frequency ω0.  Qualitatively compare the value from your graph to what you computed in part A 
above. 
 
C-4:  Plot the amplitude of VR(t) vs. ω.  From the graph, determine the resonance frequency ω0, 
and the width of the resonance ∆ω, and from these determine the Q value.  Compare to the 
values determined in parts A and B and comment on any discrepancies.  Why are these values so 
critical for the performance of a radio? 
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