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Experiment V:  The AC Circuit, Impedance, 
and Applications to High and Low Pass 
Filters 
 
I.  References  
 

Halliday, Resnick and Krane, Physics, Vol. 2, 4th Ed., Chapters 33 

Purcell, Electricity and Magnetism, Chapter 4 

 

II.  Equipment  
 
Digital Oscilloscope    Digital Multimeter  
Waveform Generator    LCR meter 
Differential Amplifier                                     Capacitor box 
A variety of Resistors, Capacitors, and Inductors 
 
 
III.  Introduction   
 

We have now been introduced to resistors, capacitors and inductors and investigated their DC 
behavior.  Now, we will see how they behave in an AC circuit.  We will see that the response of 
RL and RC circuits are frequency dependent, and we can exploit this to build a circuit that filters 
unwanted frequencies. 

Filters are ubiquitous in electronics and have many uses.  For example, small audio speakers are 
more efficient at reproducing high frequencies (such speakers are known as “tweeters”) and 
larger speakers are more efficient at reproducing lower frequencies (“woofers”).  (An aside:  
Why is this true?  You will cover this in PHYS273 if you haven’t already.)  Your stereo or home 
theater system may contain filters to separate the high and low frequency components before 
channeling them to the appropriate speaker.  Some sensitive electronic devices will contain a 
“bandstop” filter that will remove 60 cycle noise from home AC power delivery.   Conversely, 
your cell phone will contain a “bandpass” filter, which selectively passes only the frequencies 
allocated to you, so you can hear your conversation, and not everyone elses!  Your cell phone 
“tunes” to a frequency band in much the same way as your radio tunes to a particular station. 

We will start here with simple AC circuits that contain either an inductor or a capacitor, but not 
both.  Along with a resistor, these components can be used to form a low pass or a high pass 
filter, respectively. 

 

A. Capacitive Impedance 
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Figure V-1 shows a time dependent voltage source V(t)=V0cos(ωt) connected in series with a 
resistor R and a capacitor C.  In order to find the current I(t) through the circuit, we can treat the 
capacitor as having a complex impedance, and then use Kirchhoff’s laws to analyze the circuit.  
This AC circuit is “equivalent” (as far as finding the current is concerned) with a pseudo DC 
circuit with the same V(t), but with the capacitor replaced by a resistor with a complex 
impedance given by the equation 

. 

 
 

 
 

Figure V-1:  DC equivalent of an AC circuit with a resistor and capacitor 
 
 
 
This is a DC circuit with a voltage source given by  and an equivalent resistance  
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with τ =RC.  The effective resistance of the circuit now has a magnitude and a phase angle φ.  
The magnitude will allow us to determine the current through the circuit: 
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and the current  I=V/Req is  
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Of course, we always take the “real part” to get real voltages and currents.  Note that the current 
through the circuit is phase-shifted from the input voltage by the angle φ. We can now calculate 
the voltage drop across the resistor and the capacitor using the usual DC rule for “resistors” 
V=IR: 
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We then use the fact that 2/tantan1 πφφ
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where the last step is a result of keeping only the real part of VC.  The results are summarized in 
Table V-1 below.  A few results of these basic equations are:  
 

1. The current I and the voltage drop across the resistor VR are in phase with each other, and 
out of phase with the input voltage V(t).  

 
2. The voltage drop across the capacitor VC  is out of phase by a quarter cycle (π/2) 
 
3. The input voltage, current, VR, and VC all have the same frequency. 

 
Input Voltage )cos(0 tVV ω=  
Current )cos(cos0 φωφ −= tII  
Voltage drop across R )cos(cos0 φωφ −= tVVR  
Voltage drop across C )sin(sin0 φωφ −−= tVVC  
Initial current amplitude ( ) φφ coscos 00 RVI ≡  
RC Decay time  
Phase shift ωτφ 1τan −≡  

 
Table V-1:  Properties of the current and various voltages in the RC circuit.  Note that I0 = 
V0/R. 
 
 
Figure V-2 shows the 3 signals V(t) (input voltage), VR(t), and VC(t) for the phase φ  = −0.6 
radians.  We see that the voltage across the resistor leads (is ahead of in time) the input voltage, 
and has a decreased amplitude, whereas the voltage across the capacitor lags (is behind in time) 
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the input voltage. Notice also that VC and VR are out of phase by π/2 (seen by the fact that when 
VR peaks, VC is at zero). 
 
The “leading” and “lagging” properties can also be seen by writing ωτ − φ = ω(τ − φ/ω) which 
allows you to calculate how much in time the signals differ according to the phase difference.  In 
Figure V-2, note that VR leads V(t) by a time difference δt = φ /ω. 
 
 

 
 

 
Figure V-2:  Voltages in an AC RC circuit for the phase φ  = −0.6 radians 
 
 
B. Inductive Impedance 
 
We can also think of an inductor as having a complex impedance, but with the impedance given 
by  
 
                                           XL = iωL and a time constant τ = L/R 
 
So, unlike the capacitive impedance, the inductive impedance is directly proportional to the 
frequency.  If you think about it, this should make sense intuitively.  An inductor tends to “fight” 
change in current, by inducing a back emf, thus, the higher the rate of change, the more it 
“resists” current.  A capacitor tends to fight a change in voltage by storing charge.  At high 
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frequencies, the capacitor never fully charges, and therefore it doesn’t have a high resistance.  
The impedance of a capacitor is inversely proportional to frequency.  
 
In an inductive circuit, the voltage across the inductor will lead the input voltage, or emf.  Put 
another way, the current (or equivalently, the voltage across the resistor) lags.  One way to keep 
this straight in your mind is to remember ELI the ICE man, where E represents the input voltage 
or emf.   The Emf Leads the current, I, in an inductive (L) circuit whereas the current (I) leads 
the Emf in a capacitive circuit. 
 
In an RL series circuit, the total impedance is 
 
Z = [R2+(ωL)2]1/2 

 
III.  Introduction to High Pass and Low Pass Filters 
 
From the expressions for impedance, we can see that in the limit of a DC current (zero 
frequency), a capacitor will behave as an “open circuit”.  In other words, once the capacitor 
charges up, no more current can flow (infinite resistance).  In the limit of very high frequency 
(approaching infinity), the same circuit will have nearly zero resistance, and will be have like a 
short circuit.   
 
Conversely, we see that an inductor will behave like a short circuit for a DC current, and an open 
circuit as the frequency approaches infinity. 
 
So, what is all of this good for?  We can exploit this behavior to build filters.  We have 
components whose impedance is frequency dependent.  By Ohm’s Law, this means that the ratio 
of the output voltage on the resistor to the input voltage (often called the “gain”, G) is frequency 
dependent.  Because these are “passive” components (not powered), the highest gain we will 
achieve is one. 
 
For the capacitive circuit shown in Fig. V-1: 
 
G = R/[R2+(1/ωC)]2]1\2 = 1/[1 + 1/(ωτ)2]1/2, with τ = RC 
 
 Note that this becomes 1 at very high frequencies, and 0 for DC currents, as we know it should. 
 
For an inductive (RL) circuit: 
 
G = R/[R2+(ωL)2]1/2 = 1/[1 + (ωτ)2]1/2, with τ = L/R 
 
  Again, we can verify that this expression predicts the expected behavior in the limit of low and 
high frequencies. 
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IV.  Experiments 
 
Experiment Part A 
 
In this part, you will measure the phase shift for an RC and RL circuit. 
 
A.1: Set up an RC circuit by putting a 10 kΩ resistor and a 0.1 µF capacitor in series with the 
signal generator.  Use a ~100 Hz sine wave as input and display the two signals V0(t) and VR(t) 
on the scope.  (When setting up the circuit, you may wish to think a bit about the instrumentation 
amplifier.  How can you set up the circuit to avoid using it?  How could you set up the circuit to 
require its use?)  Use the TTL signal as the external trigger so that the displayed signals always 
have a fixed time reference.  
 
You should see the phase shift between the two signals as a shift in time, just as in Figure IV-2 
above.  Capture your waveform and paste into lab report.  The phase shift φ and the time shift δt 
are related by the fact that the signal oscillates in time with period (phase 2π) given by T=1/f.  
The phase angle is defined as the fraction of a full period corresponding to the time shift δt = 
φ /ω: 
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From a measurement of the time difference δt between the zero crossings of the two signals, 
determine the phase difference φ  (call this φ t).  Estimate the uncertainty in the phase shift from 
your estimate of the uncertainties in the measured time difference. 
 
 
A.2: The amplitude of VR will be less than (or equal to) the amplitude of V0(t), which is defined 
as V0.  The reduction in amplitude can be shown to have a simple dependence on the phase shift. 
 
|VR/V0| = G = R/[R2+(1/ωC)2]1/2 = |cos φ| 
 
Measure VR and V0, and record them.  Do your values for gain G agree?  Convert this value of G 
into a phase shift, and call it φV.  Compare your result for φ V and φ t using a statistical test.  
Which can give a more precise value for φ, the measurement in part A.1 or the value extracted 
using the relation given above. 
 
A.3: Equivalently, we can write 
 
|VC|/|VR| = 1/ωRC = 1/ωτ = tanφ 
 
Thus, if we plot the amplitude |VR|/|VC| vs. ω (Remember that ω = 2 π f !), the slope should be τ.  
Please make this plot, evaluate τ from the slope, and compare to the value of τ calculated from R 
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and C.  Use frequencies from 50 to 500 Hz (multiply by 2π to get ω).  Take about seven data 
points.  Do not do error analysis for this section.  Be sure to notice that the phase shift can 
change sign. 
 
 
A.4: Now let’s look at the phase shift for an inductive circuit.  For a 100 mH inductor and a 
resistor of 50 to 100 Ω, use a ~ 1 kHz sine wave and determine the phase shift by measuring it 
both directly from the time shift you observe on your scope screen, and by measuring the ratio of 
the input voltage, and the voltage across the resistor.  Compare your results using a statistical 
test. 
 
 
Experiment Part B 
 
Now, you are to design two circuits, one which supplies a woofer, and the other that sends 
sounds to a tweeter.  Pretend the transition between your woofer and your tweeter occurs 
between f = 2000 and 5000 Hz.  Suppose your speaker has a resistance of 50 Ω. 
 
For a filter, the cutoff frequency f0 is defined as the point where the gain G is 1/sqrt(2).  Find an 
expression for this frequency for each of your filters. 
 
Discuss this with your partner, or think about it carefully yourself if you don’t.  What are the 
values of the components you will use in your circuits? 
 
Once you have designed your circuit, plot the predicted impedance vs. frequency and the gain vs. 
frequency in Excel from 1 kHz to 100 kHz. 
 
Now hook up your high pass filter, using a variable resistor box set at 50 Ω as a stand-in for your 
speaker, which in this case is your output or “load”, and put in an input sine wave of 5V 
amplitude.  Use the variable capacitor set to the value required to create your high pass filter.  Set 
channel 1 of your scope to read the input voltage from the signal generator, and set channel 2 to 
measure the voltage across your resistor or “speaker”.  Measure the frequency dependent gain 
from 10 Hz to 100 kHz at 20 points that are equally spaced in log10  (Excel  can be used to fill in 
these values.)   Record the frequency, the gain, and the uncertainty in the gain.  You may use the 
math mode on your scope to calculate the gain.  Does this agree to within your model prediction 
plotted above?  If not, how do they differ? 
 
Now sweep through the frequencies again and note the value of the phase shift of the output 
versus the input voltage.  Describe how the phase and the gain are correlated.  What is the gain 
when the phase shift is zero?  What are the phase shifts on either end of the frequency spectrum? 
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