Solutions to Homework 1

February 11, 2003

Problem 1

a: Angular frequency $\omega=\sqrt{\frac{\kappa}{\text { mass }}}, \kappa=800 \mathrm{~N} / \mathrm{m}$, mass $=2 k g$, therefore, $\omega=20 \mathrm{rad} / \mathrm{s}$.
b:Block released from rest $\mathrm{A}=20 \mathrm{~cm}$. displacement $y=20 \cos (\omega t)$, velocity $\nu=d y / d t$, Acceleration $a=d \nu / d t=-\omega^{2} y$. For downward positive $y=12 \mathrm{~cm}$, $a=-4800 \mathrm{~cm} / \mathrm{s}^{2}$, upward negative $y=-12 \mathrm{~cm}, a=4800 \mathrm{~cm} / \mathrm{s}^{2}$; With Energy conservation, $E=1 / 2 \kappa A^{2}=1 / 2 m \nu^{2}+1 / 2 \kappa y^{2}$. we have $v= \pm \omega \sqrt{A^{2}-y^{2}}$, for $y= \pm 12 \mathrm{~cm}, \nu= \pm 320 \mathrm{~cm} / \mathrm{s}$

Problem 2

a Consider what happens when the mass is given a displacement $x>0$,one spring will be stretched x and the other will be compressed x, they will each exert a force of magnitude $20 \frac{N}{m} \times x$ on the mass in the direction opposite to the displacement. Hence the total restoring force is $F=-20 \times x-20 \times x=-40 N / m \times x$, $F=-\kappa x$ tell us the system has a spring constant $\kappa=40 N / m$. Hence, the period $T=2 \Pi \sqrt{\frac{\text { mass }}{\kappa}}=0.54 \mathrm{~s}$.
b:when the mass is displaced a distance y downward, each spring is stretched a distance y . The net restoring force is then $F=2 \times(-20 N / m) y$, Hence, again, from $F=-\kappa x$, we have $\kappa=40 N / m$, the same as in (a). $T=0.54 \mathrm{~s}$.

Problem 3

Mass m_{2} shoots off when the spring stretched maximally and carrying kinetic energy K away from the system.so the amplitude of oscillation of m 1 satisfies $1 / 2 \kappa A^{2}=1 / 2 m_{1} \nu^{2}$, where ν is the velocity at the equilibrium position.

To find ν, potential U of spring $=$ maximum K_{t} of masses.
$\kappa d^{2} / 2=\left(m_{1}+m_{2}\right) \nu^{2}$, giving $\nu^{2}=\left(\kappa d^{2}\right) /\left(m_{1}+m_{2}\right)$.
Then we have $1 / 2 \kappa A^{2}=1 / 2 m 1 \nu^{2}=1 / 2\left(\kappa d^{2}\right) /\left(m_{1}+m_{2}\right)$, then $A=d \sqrt{m_{1} /\left(m_{1}+m_{2}\right)}$.

Problem 4

a: If the stick is rotated through a small angle θ, each spring is stretched a distance $L \theta / 2$. Each spring causes a torque $=\theta / 2 \times L / 2$ with both torque in the same direction. The torque equation is
$-2 \kappa \theta(L / 2)(L / 2)=I_{c m} \alpha$
where $I_{c m}=m L^{2} / 12$, the momentum of inertia to certer of mass; $\alpha=d^{2} \theta / d^{2} t$ then $\alpha=-(6 \kappa / m) \theta$. This is the equation for harmonic motion.
b) frequency $f=\sqrt{6 \kappa / m} / 2 \Pi$.
c) The velocity reach the maxium when the stick passes the horizonal. Let θ_{0} be the inital angle, so the maximum velocity $=(L / 2)(2 \Pi f) \theta_{0}=L \theta_{0}(1.5 \kappa / m)^{1 / 2}$.

Problem H1

Equation of motion is $\tau=I \alpha$, where τ is the external torque, I is the momentum of inertia, α is the angular acceration, and τ and I are about to the pivot point. TheContribution to τ is due to the rod and disk $\tau=-m g(L / 2) \sin \theta-M g(R+L) \sin \theta$ where θ is a small angular displacement from the vertical. $I=I_{\text {rod }}+I_{\text {disk }}=\left(m L^{2}\right) / 3+\left[\left(M R^{2}\right) / 2+M(R+L)^{2}\right]$. where we used the paranal axis law to calculate $I_{\text {disk }}$. Ror small $\theta, \sin \theta \simeq \theta$, so the equation of the motion is $-g[M R+M L+(m L) / 2] \theta=\left[m L^{2} / 3+3 M R^{2} / 2+2 M R L+M L^{2}\right] \alpha$ so easilly to get the period $f=1 / T,(2 \Pi f)^{2}$ is the coefficient of the θ term. $T^{2}=\left[4 \Pi^{2} / g\right]\left[\left(m L^{2}\right) / 3+\left(3 M R^{2}\right) / 2+2 M R L+M L^{2}\right] /[M L+M R+(m L) / 2]$.

