Prof. Melanie Becker Room 4125, (301)405-1774 melanieb@physics.umd.edu

Problem 1. [10 points]

The current $I = I_0 e^{-at} \cos(\omega t)$ passes through a series RL circuit.

- a) Find V_{RL} , the voltage across this combination. Write your answer in the form $V_{RL} = V_0(t) \cos(\omega t + \theta_0)$.
- b) Compute V_{RL} for $I_0=3A$, a=2 and $\omega=40$ rad/sec.

Problem 2. [10 points]

The electrical circuits discussed in class were electrical circuits in series. We now would like to to a similar analysis for the electrical circuits in parallel, that are sketched below.

a) Show, that the resonant frequency for the pure LC parallel-tuned circuit of figure 1 is the same, as that for the series tuned circuit and is given by

$$f_r = \frac{1}{2\pi\sqrt{LC}}. (1)$$

b) Compute the resonant frequency of the circuit shown in figure 2.

Problem3 [10 points]

Find the two normal modes of vibration for a pair of identical damped coupled harmonic oscillators, that are described by the equation of motion

$$mx_1'' + bx_1' + k'x_1 + k_c x_2 = 0, (2)$$

with a similar equation, which exchanges x_1 with x_2 and we have defined $k' = k + k_c$. Hint: Make an exponential ansatz $x_i = A_i e^{i\omega t}$, for i = 1, 2.