HW# 4 -Phys273-Spring 2003

Due Tuesday, March 11, 2003, by 9.30am

Prof. Melanie Becker Room 4125, (301)405-1774 melanieb@physics.umd.edu

Problem 1. [10 points]

Consider the system of two point particles coupled through springs with equal spring coupling constant of the figure below. Both masses have the same value $m_1 = m_2 = m$ and we consider a one dimensional oscillation about the equilibrium position, where non of the strings are stretched. Suppose (as sketched below, that m_1 is displaced by an amount x_1 and m_2 by an amount x_2 .

- a) What is the equation of motion of both masses?
- b) Suppose both masses oscillate with the same frequency but a different amplitude $x_1(t) = A_1 \cos(\omega t)$ and $x_2(t) = A_2 \cos(\omega t)$. Determine the possible values of the frequency ω .
- c) Once you know the value of the frequencies, determine the value of (or more precisely the relation between) A_1 and A_2 .
- d) How do you interpret this result?

Problem 2. [10 points]

The most general solution to problem 1 will have four undetermined constants, which follow from the initial conditions. Making an ansatz

$$x_1(t) = c_1 \cos(\omega_1 t + \phi_1) + c_2 \cos(\omega_2 t + \phi_2)$$

$$x_2(t) = -c_1 \cos(\omega_1 t + \phi_1) + c_2 \cos(\omega_2 t + \phi_2),$$
(1)

determine the form of the solution by considering the initial conditions $x_1(0) = 0$, $x_2(0) = a$, $\dot{x}_1(0) = \dot{x}_2(0) = 0$.