HW# 2 -Phys273-Spring 2003

Due Friday, Feb. 14, 2003, by 9am

Prof. Melanie Becker

Room 4125, (301)405-1774

melanieb@physics.umd.edu

1. Express the following in polar form $re^{i\theta}$: -6, -5i, $(1+i)/\sqrt{2}$, $(1-i)/\sqrt{2}$, 2+3i, (2+i)/(1+2i). (5 points)

- 2. (i) Find all the cube roots of unity $1^{1/3}$, and express them both in polar form and in the form x + iy (with x and y real). (ii) Plot them in the complex plane. (5 paints).
- 3. Show that the complex conjugate operation that sends zz = x + iy to $z^* = x iy$ enjoys the following properties: (10 paints).
 - (a) $(z_1 + z_2)^* = z_1^* + z_2^*$
 - (b) $(z_1z_2)^* = z_1^*z_2^*$
 - (c) $(1/z)^* = 1/z^*$
 - (d) $(z_1/z_2)^* = z_1^*/z_2^*$
 - (e) $(e^z)^* = e^{z^*}$
- 4. The natural logarithm $\ln z$ of a complex number z is defined by the equation

$$e^{\ln z} = z$$

This equation does not determine $\ln z$ uniquely, so $\ln z$ is said to be a multi-valued function of z. (5 points).

- (a) Find all the values of ln 1.
- (b) Show that for any z there are infinitely many values of $\ln z$.
- (c) Express $\ln(re^{i\theta})$ in terms of r and θ .
- (d) Show that $z^* = e^{(\ln z)^*}$.
- 5. Using the logarithm we can define z^w for any two complex numbers z and w, by

$$z^{w}=e^{w\ln z}.$$

Find all the values of the following:

- (a) 1^2
- (b) 1¹
- (c) $(-1)^{i}$
- (d) i1
- 6. Express the following in the form $Re[Ae^{i(\omega t + \phi)}]$: (10 points).
 - (a) $\sin \omega t + \cos \omega t$
 - (b) $\cos(\omega t \pi/3) \cos \omega t$
 - (c) $2\sin\omega t + 3\cos\omega t$
 - (d) $\sin \omega t 2\cos(\omega t \pi/4) + \cos \omega t$