Maxwells, Equations: (In Integral Form)

$$
\begin{aligned}
& \oint_{\text {sulfured }} \vec{E} \cdot \hat{n} d a=\frac{\text { Qenelosed }}{\varepsilon_{0}} \\
& \oint_{\text {surface }} \vec{B} \cdot \hat{n} d a=\varnothing
\end{aligned}
$$

$$
\oint_{\text {carne }} \vec{E} \cdot d \vec{l}=-\frac{d \Phi_{B}}{d t}
$$

$$
\oint_{\text {curve }} \vec{B} \cdot d \vec{l}=\mu_{0} I+\mu_{0} \xi_{0} \frac{d \phi_{E}}{d t}
$$

Caws' Law
Bauss'2 Law for Magnotfiom

Faraday s Law
Modified Amperes Lav.

Roughly speaking, the left side of the equating tell us what the $\vec{E}$ \& $\vec{B}$ field do, and the right side soy tells $k$ what causes then to do it

Gauss Law: $\underbrace{\oint_{\text {Than }} \vec{E} \cdot \hat{k} d a}_{\substack{\text { Flux of } \vec{E} \\ \text { Through } a}}=\frac{\text { Qenelosed }}{\varepsilon_{0}}$
closed swface.... The presence of charge insole that surface.
Example:


$$
\leftarrow \text { Non-zess flax }
$$ caused by charge $q$.

Couveruly, if there ak no chases inside, then The flux must be zero:


Since the flux is a measure of the number of elective Field lines which originate insole, her the flax is zero.

Gauss' Law for Magutisn

$$
\oint \vec{D} \cdot \hat{a} d a=\varnothing
$$

surfer

Flux throne
个
is allays
a closed surface zero
closed surtene.

Flux of $\vec{B}$ mut bu es $\Rightarrow$ there are no magnetic monopoles which can act ar a source of $\bar{B}$ field lines.

So bars' Lew can be summarized.
"Electric Field lias can begin and end on charges. If charge is present then there will be a non-zers flux through a surface.

Magnetic field lines can new r begin or and anywhere, because there are no magintie monopoles. They cam only go in circles.'

Farads Lan

$$
\oint_{{ }_{n} \text { Electric }}^{\oint \vec{E} \cdot d \vec{e}}=\frac{-\frac{d \Phi_{B}}{d t}, \quad \Phi_{B}=\int_{\text {open sutace }}^{p} \vec{B} \cdot \hat{u} d a}{}
$$

Field lines will "when the magnetic go in cirdes...s? flux is changing in tome."


$\phi_{B}$ is larger nom.
This creates a circulating electric field

Just the $\vec{E}$ field:

$\Leftarrow \vec{E}$ field $\dot{\psi}$ going in a circle due to then
changing magnexte flux.

Modified Amperes Law


In Vacuum, Maxwell' Equation look like: (set all charges and current equilto zero)

$$
\begin{aligned}
& \oint_{\text {satan }} \vec{E}^{\hat{E}} \hat{n} d a=\varnothing \quad \text { neither } \stackrel{\rightharpoonup}{E} \text { nor } B \text { can } \\
& \oint \hat{D} \cdot \hat{n} d a=\varnothing \quad \text { start or stop anywhe" }
\end{aligned}
$$

surface

$$
\oint \vec{E} \cdot d \vec{l}=-\frac{d \phi_{B}}{d t}\left\{\begin{array} { l } 
{ \text { u Both } \vec { E } \& \vec { B } \text { will go } } \\
{ \oint \vec { B } \cdot d \vec { l } = \mu _ { 0 } \varepsilon _ { 0 } \frac { d \phi _ { E } } { d t } }
\end{array} \left\{\begin{array}{l}
\text { in ureles, caused } \\
\text { by a chanson flux } \\
\text { of the other field 4 }
\end{array}\right.\right.
$$

Faraday s Lam \& Ampere's Lam work together to create propagation waves in the $\vec{E} \& \vec{B}$ fields. It wonk like this:
$\left(\begin{array}{c}\text { crater a changing } \\ \vec{E} \Gamma\end{array}\right.$ $\vec{E} f(\ln x)$ $U \leqslant$ Ampere ere

We can show this Foradrys Lam a Ampere Law imply that $\vec{E}$ and $\vec{B}$ both satisfy the Classics I Wave Equation.

Argument: Apply Faraday) Law around a square region with an elector field in the $\hat{y}$ direction.

$\therefore$ The left hand side of faraday Law saps

$$
\oint_{\text {square }} \vec{E} \cdot d \vec{l}=\underbrace{E_{y}\left(x_{2}\right)}_{\text {segment }} \Delta y-\underbrace{E_{y}\left(x_{1}\right) \Delta y}_{\text {segment }(4)}=\left[E_{y}\left(x_{2}\right)-E_{y}\left(x_{1}\right)\right] \Delta y
$$

(Segments (i) © contribute zero because there $d \vec{l}$ is perpindicen to $\vec{E}$ ).

Now $E_{y}\left(x_{2}\right)-E_{y}\left(x_{1}\right)$ is the change in $E_{y}$ our the small distance $\Delta X$.

Letting $\Delta x \rightarrow \varnothing$,
We can write This charge as

$$
E_{y}\left(x_{2}\right)-E_{y}\left(x_{1}\right)=\Delta E_{y} \approx \frac{\partial E_{y}}{\partial x} \Delta x
$$

Then The lift hand sick of faradoit Lan sits

$$
\oint_{\text {square }} \vec{E} \cdot d \vec{e}=\underbrace{\left(\frac{\partial E_{x}}{\partial x} \Delta x\right) \Delta y}_{\text {Lot hand }}
$$

sick of Faraday Law.
The Right hand side of Faraday's Law says this This circulation in $\vec{E}$ must be caused by $a$ changing flux of $\vec{B}_{B}$ :

Putting the Left Hand side togith with the Right Hand sick:

$$
\frac{\partial E_{y}}{2 x} \Delta x \Delta y=\frac{d B_{z}}{d t} \Delta x \Delta y
$$

or

$$
\frac{\partial E_{y}}{\partial x}=\frac{d B_{z}}{d t}=\frac{\partial B_{z}}{\partial t}
$$

$$
\begin{equation*}
\frac{\partial E_{y}}{\partial x}=-\frac{\partial B_{z}}{\partial t} \tag{1}
\end{equation*}
$$

This is faraday Law.
We can mike a similar argument using modified Ampere) Law:


The mathemitis is ideation became the modified Amperes Law is completely analogs to Faradop) Law (in the absence of changes \& currents.)

Th Result is

$$
\begin{equation*}
\frac{\partial B_{z}}{\partial x}=-\mu_{0} \varepsilon_{0} \frac{\partial E_{y}}{\partial t} \tag{2}
\end{equation*}
$$

This is The modified Amperes Lav n

Now put (1) (2) together. Take $\frac{2}{\partial x}$ of
Eq. (1):

$$
\begin{aligned}
& \frac{\partial}{\partial x}\left(\frac{\partial E_{1}}{\partial x}\right)=-\frac{\partial}{\partial x}\left(\frac{\partial B_{z}}{\partial t}\right)=-\frac{2}{\partial t}(\underbrace{\frac{\partial B_{z}}{\partial x}}_{\text {substitute }}) \\
& \text { from Eq. (2). } \\
& =\frac{-\partial}{\partial t}\left(-\mu_{0} \varepsilon_{0} \frac{\partial E_{y}}{\partial t}\right) \\
& =\mu_{0} \varepsilon_{0} \frac{\partial^{2} E_{y}}{\partial t^{2}} \\
& \therefore \frac{\partial^{2} E_{y}}{\partial x^{2}}=\mu_{0} \varepsilon_{0} \frac{\partial^{2} E_{y}}{\partial t^{2}} \quad \text { Clasicisal wame Equation }
\end{aligned}
$$

We can inruediately see that:
(1) EM waves propagate with a phase velocity of $V_{p}=\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}}=\underbrace{3 \times 10^{8} \mathrm{mils}}_{\text {speed of light }}$ in vacuum
(2) EM waves can be identified with light.
(3) EM wake will display no dispersion
in vacuum. $\Rightarrow$ Pubes will propagste forever.
$\Rightarrow$ Group velocity equal phase velocity
$\Rightarrow V_{p}$ is independent of worlength

Maxwell's Equations in Integral form tell us about the global properties of $\vec{E} \otimes \vec{B}$. This can be vary useful, but in many cases it is also useful to know how $\vec{E} \& \vec{B}$ are behaving at a single point in space. For this lune need to re-coust Maxwell's Equations in Differentione Form.

The Operator $\vec{\nabla}$ (or $\nabla$ ) (Gradient)

Let $f(x, y, z)$ be a scalar function of portion. Then

and
We can think of $\vec{\nabla}$ as being a vector:

$$
\begin{aligned}
\vec{\nabla} & \equiv \hat{x} \frac{\partial}{\partial x}+\hat{y} \frac{\partial}{\partial y}+\hat{z} \frac{\partial}{\partial z} \\
& =\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)
\end{aligned}
$$

烈 200 ,
$\vec{\nabla}$ can aet in 3 ways:
(1) Operate on a scalar, producing a vector:

$$
\vec{\nabla} F=\text { vector }=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial x}, \frac{\partial F}{\partial z}\right. \text { ) (The Gradus) }
$$

(2) Operate on a vector function, via a dot-product:

$$
\vec{\nabla} \cdot \vec{v}=\text { scalar }=\frac{\partial v_{x}}{\partial x}+\frac{\partial v_{y}}{\partial y}+\frac{\partial v_{z}}{\partial z}
$$

This is called "the Dinergence"
(3) Operate on a vector Function, via a cross-product

$$
\begin{aligned}
\vec{\nabla} \times \vec{v}= & \left|\begin{array}{ccc}
\hat{x} & \hat{y} & \hat{z} \\
\frac{2}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
v_{x} & v_{y} & v_{z}
\end{array}\right| \\
= & \hat{x}\left(\frac{\partial v_{z}}{\partial y}-\frac{\partial v_{y}}{\partial z}\right)+\hat{y}\left(\frac{\partial v_{x}}{\partial z}-\frac{\partial v_{z}}{\partial x}\right) \\
& +\hat{z}\left(\frac{\partial v_{y}}{\partial x}-\frac{\partial v_{x}}{\partial y}\right)
\end{aligned}
$$

This is called "The curl"
or "the circulation" ts. (older terminology).
Example Divergences

1) Let $\vec{v}=\vec{r}=x \hat{x}+y \hat{y}+z \hat{z}$.

Then $\vec{\nabla} \cdot \vec{v}=\frac{\partial}{\partial x}(x)+\frac{\partial}{\partial y}(y)+\frac{\partial}{\partial z}(z)$

$$
=1+1+1
$$

$$
=3
$$

2) Let $\vec{v}=\hat{z}$

$$
\text { Then } \vec{\nabla} \cdot \vec{V}=\frac{2}{2 x}(\phi)+\frac{2}{2 y}(\phi)+\frac{2}{2 z}(1)=\phi
$$

3) Let $\vec{v}=z \hat{z}$

Then $\vec{\nabla} \cdot \vec{v}=\frac{2}{\partial x}(\phi)+\frac{2}{\partial y}(\phi)+\frac{2}{2 z}(z)=1$.
The Divergence is a measum of whether any particular point in space is acting like a "Sours" of the vector field. So a uniform field (lime $\vec{v}=\hat{z}$ ) has no divergence conywitue. in space:

$$
\left.\begin{array}{ll}
\hat{z} \uparrow \quad \uparrow \uparrow \uparrow \uparrow \uparrow \\
\uparrow \uparrow \uparrow \uparrow \uparrow
\end{array}\right\} \text { No divergence }
$$

But a field which incmases in intensity (magnitude) generally does have a non-zero dingremee.


Example curls
(1) Let $\vec{v}=-y \hat{x}+x \hat{y}$ :


Curl of $\vec{v}$ :

$\hat{2}$
Then $\vec{\nabla} \times \vec{v}=\left|\begin{array}{ccc}\hat{x} & \hat{y} & \hat{z} \\ \frac{2}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ -y & x & \phi\end{array}\right|=\left(\frac{2}{\partial x}(x)-\frac{2}{\partial y}(-y)\right) \hat{z}$

$$
=2 \hat{z}
$$

(2) Let $\vec{v}=x \hat{y}$
$\vec{v}:$


Curl af $\vec{v}$,


$$
\begin{aligned}
& =(1) \hat{z} \\
& =\hat{z}
\end{aligned}
$$

The curl is a measure of the tendency of The vector field to rotate at each point in space. Imagine pitting a tiny paddle wheel in the vector filch. If it wants to rotate, Rem the curl is non-zero
$2^{\text {nd }}$ Derivatives
(1) The Divergence of a Gradient:

$$
\begin{aligned}
\vec{\nabla} \cdot \vec{\nabla} f & =\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) \cdot\left(\frac{\partial f}{r x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial x}\right) \\
& =\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}
\end{aligned}
$$

we call tho) the Laplacian Operator:

$$
\vec{\nabla} \cdot \vec{\nabla} F=\nabla^{2} F=\text { Laplacion of } f .
$$

(2) The curl of a Gradient:

$$
\vec{\nabla} \times(\vec{\nabla} F) \leqslant \begin{aligned}
& \text { This is almaty zero } \\
& \text { (prove from defination of } \vec{\nabla} \text { and carl). }
\end{aligned}
$$

(3) Gradient it a Divergence:
$\vec{\nabla}(\vec{\nabla} \cdot F) \leftarrow$ does not occur very often in physics.
(4) Divergence of a curl:

$$
\vec{\nabla} \cdot(\vec{\nabla} \times \vec{r}) \leftarrow \text { this is always zero }
$$

(5) Curl of a Curl:

$$
\stackrel{\rightharpoonup}{\nabla} \times(\stackrel{\rightharpoonup}{\nabla} \times \stackrel{\rightharpoonup}{v})=\stackrel{\rightharpoonup}{\nabla}(\stackrel{\rightharpoonup}{\nabla} \cdot \stackrel{\rightharpoonup}{v})-\underbrace{\nabla^{2} \stackrel{\rightharpoonup}{v}}_{\uparrow}
$$

This is the Laplacian off a vector:

$$
\begin{aligned}
\nabla^{2} \stackrel{\nabla^{2}}{v} & =\left(\frac{\partial^{2} v_{x}}{\partial x^{2}}+\frac{\partial^{2} v_{x}}{\partial y^{2}}+\frac{\partial^{2} v_{x}}{\partial^{2} z^{2}}\right) \hat{x}+\nabla^{2} v_{y} \hat{x}+\nabla^{2} v_{z} \hat{z} \\
& +\left(\frac{\partial^{2} v_{y}}{\partial x^{2}}+\frac{\partial^{2} v_{y}}{\partial x^{2}}+\frac{\partial^{2} v_{y}}{\partial z^{2}}\right) \hat{y} \\
& +\left(\frac{\partial^{2} v_{z}}{\partial x^{2}}+\frac{\partial^{2} v_{z}}{\partial y^{2}}+\frac{\partial^{2} v_{z}}{\partial z^{2}}\right) \hat{z}
\end{aligned}
$$

The Fundamental Theorem of Calculus for Divergences
Also kinsmen as "Gauss" Theorem"" and/or" the Divescene Theorems"

Recall the fundamental theorem of ordinary ID calculus.

$$
\int_{a}^{b} F(x) d x=F(b)-F(a) \quad \text { when e } \frac{d f}{d x}=F(x)
$$

or $\int_{a}^{b} \frac{d F}{d x} d x=F(b)-F(a)$
In vector calculus we have several types of derivatives, so we have several versions of the fundaments 1 theorem.

For divergences, the fundamurtol theerrim says

$$
\int_{\text {volume }}(\vec{\nabla} \cdot \vec{v}) d V=\oint_{\text {surface }} \vec{v} \cdot \hat{n} d a \quad \text { "Gawsi" Theorem" }
$$

Interpretation: Since $\vec{\nabla} \cdot \vec{V}$ measwes how much The vector field $\vec{V}$ spread, ont at each point in space, if we integrate ow a volume it should be equal to the flux if $\vec{v}$ out of the surfers of the volume.

Volume Integral


A solid sphere

Surfer integral

its spherical surface.
Fundaments 1 Theorem of Calcuskes for Curls
Also know as "Stokes Theorem"

$$
\begin{aligned}
& \int_{\text {surface }}^{(\vec{\nabla} \times \vec{v}) \cdot \hat{n} d a}=\oint_{\text {curve }} \vec{v} \cdot d \vec{e} \\
& \begin{array}{l}
\text { flux of the } \\
\text { curl through the } \\
\text { surface }
\end{array} \\
& =\text { Integral of } \vec{v} \text { around } \\
& \text { then edge }
\end{aligned}
$$

Interpectation: The curl measures how much the vector field $\vec{v}$ tends to rotate at each point in space. If un e add up lots of small rotation vectors, me should get the lime integrot around The edge:

surface integral of the curl

line integral around the boundary.

Maxwell's Equation in Differential Form

The interns form of Maxwell': Equations tell us how the $\vec{E}$ field and $\vec{B}$ field behave on average over a surface or around a closed curve. This is sometimes useful, but it can also be clumsy. It is often more useful to know how the fields an behaving at each point in space. This form is called the differential form.

To concert from integral form to differcuitis 1 form, we use the Divergence Theorem and Stokes Theorem:

$$
\int_{\text {and }}^{\int_{\text {Volume }}(\vec{\nabla} \cdot \vec{v}) d V=\oint_{\text {surface }} \vec{V} \cdot \hat{n} d a}{ }^{\int(\vec{\nabla} \times \vec{V}) \cdot \hat{n} d a=\oint \vec{V} \cdot d \vec{l} \quad \text { "Divergences Theorem"' }}
$$

Gauss Law in Differential form

$$
\oint \vec{E} \cdot \hat{n} d a=\frac{Q_{\text {enclosed }}}{\varepsilon_{0}}
$$

surface
$\int_{0}(\vec{\nabla} \cdot \vec{E}) d V$ accondiy to the Divergences

$$
\int(\vec{\nabla} \cdot \vec{E}) d V=\frac{Q_{\text {endowed }}}{\varepsilon_{0}}
$$

volume
Now define $\rho(x, y, z) \equiv$ charge density at each point in space
$=\frac{\text { Coulsabss }}{m^{3}}$ in SI unite
Then $Q_{\text {enclosed }}=\int_{\text {Volume }} \rho d V$
so that

$$
\int_{\text {Volume }}(\vec{\nabla} \cdot \vec{E}) d V=\frac{1}{\varepsilon_{0}} \int_{\text {Volume }} \rho d V=\int_{\text {Volupene }} \frac{\rho}{\varepsilon_{0}} d V
$$

For this to be true for any volume, it must be true that the integrands on the left hand side and might hand sids an equals

$$
\vec{\nabla} \cdot \vec{E}=\frac{g}{\varepsilon_{0}}
$$

"Gauss' Law in Differential Form"

This sesys that, at each point in space, the divergence of $\vec{E}$ is proportional to the charge density at the same point in space.

Similarly, the Dinergesen Theorem can be used to convert Bens' Lav for magneton:

$$
\begin{gathered}
\oint \vec{B} \cdot \hat{n} d a=\varnothing \\
V \\
\vec{\nabla} \cdot \vec{B}=\varnothing
\end{gathered}
$$

"Gauss" Lam for Magnetism in Differential Form?

Faraday' Law and Amperes Law in Differeation For

Usa stoke's theorem to convert:

$$
\begin{aligned}
& \underbrace{\oint_{L} \vec{E} \cdot d \vec{l}=-\frac{d \phi_{0}}{d t}=-\frac{d}{d t} \int_{\text {surfoun }} \vec{B} \cdot \hat{n} d a}_{\text {curve }} \\
& \qquad \int(\vec{\nabla} \times \vec{E}) \cdot \hat{u} d a \quad \text { by Stokes Therese }
\end{aligned}
$$ surface

$$
\int_{\text {surface }}(\vec{\nabla} \times \vec{E}) \cdot \hat{u} d a=\int_{\text {surface }}\left(-\frac{\partial \vec{B}}{\partial t}\right) \cdot \hat{n} d a
$$

Apparently the Integrands are equal:

$$
\begin{array}{r}
\vec{\nabla} \times \vec{E}=\frac{-\partial B}{\partial t} \quad \begin{array}{l}
\text { "Faraday's Lam in } \\
\text { Differential Form" }
\end{array}
\end{array}
$$

At every point in space, the curl of $\vec{E}$ is proportional to the time rate change of $\vec{B}$ at that same point.

Similarly for Ampere's Law use have

$$
\oint_{\vec{B}} \vec{B} \cdot d \vec{l}=\mu_{0} I+\mu_{0} \varepsilon_{0} \frac{\phi_{E}}{d t}
$$

curve.

$$
\frac{V}{\vec{\nabla} \times \vec{B}=\mu_{0} \vec{J}+\mu_{0} \varepsilon_{0} \frac{\partial \vec{E}}{\partial t}}
$$

"Ampler es Law" in Differntis! Form. 4
where $\vec{J}=$ current per un.t area
perpendicular to the flow.
In vacuum, with no charges and no currents, the Four Maxmell Equations care even simpler.

$$
\begin{aligned}
& \vec{\nabla} \cdot \vec{E}=\varnothing \\
& \vec{\nabla} \cdot \vec{B}=\varnothing \\
& \vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \\
& \vec{\nabla} \times \vec{B}=\mu_{0} \varepsilon_{0} \frac{\partial \vec{E}}{\partial t}
\end{aligned}
$$

In vacuerm, no charges or currents

$$
\begin{aligned}
& \vec{\nabla} \cdot \vec{E}=\rho / \varepsilon_{0} \\
& \vec{\nabla} \cdot \vec{B}=\phi \\
& \vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \\
& \vec{\nabla} \times \vec{B}=\mu_{0} \vec{J}+\mu_{0} \varepsilon_{0} \frac{\partial \vec{E}}{\partial t}
\end{aligned}
$$

with charges and currents

Wave Equation from Differential Form of Maxwells Eq. Start with Faraday) Law:

$$
\vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}
$$

Take the curl of both sides:

$$
\underbrace{\vec{\nabla} \times(\vec{\nabla} \times \vec{E})}=\vec{\nabla} \times\left(-\frac{\partial \vec{B}}{\partial t}\right)=-\frac{2}{\partial t}(\vec{\nabla} \times \vec{B})
$$

$\rightarrow$ vector calculus identity:

$$
\begin{aligned}
& \vec{\nabla} \times \vec{\nabla} \times \vec{V}=\vec{\nabla}(\vec{\nabla} \cdot \vec{v})-\vec{\nabla}^{2} \vec{v} \\
& \text { so } \vec{\nabla} \times \vec{\nabla} \times \vec{E}=\vec{\nabla}(\vec{\nabla} \cdot \vec{E})-\vec{\nabla}^{2} \vec{E} \\
& \underbrace{}_{t} \text { zero in vacuum (no chases) } \\
& \vec{\nabla} \times \vec{\nabla} \times \vec{E}=-\vec{\nabla}^{2} \vec{E}
\end{aligned}
$$

So use have

$$
-\vec{\nabla}^{2} \vec{E}=-\frac{2}{\partial t}(\underbrace{\vec{\nabla} \times \vec{B}})
$$

$\tau_{\mu_{0}} \varepsilon_{0} \frac{\partial \vec{E}}{\partial t}$ by Ampere) Law.

$$
-\vec{D}^{2} \vec{E}=-\mu_{0} \varepsilon_{0} \frac{\partial^{2} \vec{E}}{\partial t^{2}}
$$

or $\vec{\nabla}^{2} \vec{E}=\mu_{0} \varepsilon_{0} \frac{\partial^{2} E}{\partial t^{2}}$
This is the wave Equator for $\vec{E}$.

Component-by-component it reads as
$x$-component : $\frac{\partial^{2} E_{x}}{\partial x^{2}}+\frac{\partial^{2} E_{x}}{\partial y^{2}}+\frac{\partial^{2} E_{x}}{\partial z^{2}}=\mu_{0} \varepsilon_{0} \frac{\partial^{2} E_{x}}{\partial t^{2}}$
$y$-component: $\frac{\partial^{2} E_{y}}{\partial x^{2}}+\frac{\partial^{2} E_{y}}{\partial y^{2}}+\frac{\partial^{2} E_{y}}{\partial z^{2}}=\mu_{0} \varepsilon_{0} \frac{\partial^{2} E_{y}}{\partial t^{2}}$
z-cimponent: $\frac{\partial^{2} E_{z}}{\partial x^{2}}+\frac{\partial^{2} E_{z}}{\partial y^{2}}+\frac{\partial^{2} E_{z}}{\partial z^{2}}=\mu_{1} \varepsilon_{0} \frac{\partial^{2} E_{z}}{\partial t^{2}}$
Similarly, by taking the curl of Amperes Law, we get
$\vec{\nabla}^{2} \vec{B}=\mu_{0} \varepsilon \frac{\partial^{2} \vec{B}}{\partial t^{2}}$ Wame Equation for $\vec{B}$ Field.

Monochromatic Place Wave Solution

A plane wave solution traveling in the $z$-direction can be written as

$$
\vec{E}(z, t)=\vec{E}_{0} e^{i(k z-\omega t)}, \vec{B}(z, t)=\vec{B}_{0} e^{i(k z-\omega t)}
$$

Clearly these harmonic functions will satisfy the wave equation. But Maxwells Ens place som additional constraint on:
B) The direction That the amplitude vectors $\vec{E}_{0}$ and $\vec{B}_{0}$ are allowed to point

1) The melationchig between $\vec{E}$ of $\vec{B}$.

Keep in mind that, in principle, $\vec{E}_{0}$ and $\vec{B}_{\text {. could be complex, so that there i) on }}$ additions l phase hidden inside then

Additional constraints on $\vec{E} \& \vec{B}$
17 EM waves are transverk: $\vec{E}_{0}$ and $\vec{B}_{0}$ should be exactly perpendicular to the direction of travel.

This follows from $\vec{\nabla} \cdot \vec{E}=\varnothing$ and $\vec{\nabla} \cdot \vec{B}=\varnothing$.
For example, for our plan ware solution we have

$$
\begin{aligned}
& \vec{\nabla} \cdot\left(\vec{E}_{0} e^{i(k z-\omega t)}\right)=\varnothing \\
& \frac{\partial}{\partial x}(\underbrace{E_{0 x} e^{i(k z-\omega t)}}_{n_{0} x-\text { dependence }})+\frac{2}{z_{y} y}(\underbrace{E_{0 y} e^{i(k z-\omega+1}}_{\text {no y-dependence }})+\frac{\partial}{\partial z}\left(E_{0 z} e^{i(k z-L t)}\right)
\end{aligned}
$$

So this reduces to ike $E_{0 z} e^{i(k z-\omega t)}=\varnothing$
$\therefore E_{0 z}=\varnothing$ for a plan ware travelling in the $z$-directed.
Similarly $\quad B_{0 z}=\varnothing$
(follows from $\vec{\nabla} \cdot B=C$ )
For wave solutions; $\vec{E}$ and $\vec{B}$ should have no components in. The direction of travel.
2) $\vec{E}$ and $\vec{B}$ are in phase with each other and mutually perpendicular. This follows from Faraday Law:

$$
\vec{\nabla} \times \vec{E}=-\frac{\partial \stackrel{\rightharpoonup}{B}}{\partial t}
$$

The $x$-component of this equation is

$$
\frac{\partial E_{z}}{\partial y}-\frac{\partial E_{y}}{\partial z}=-\frac{\partial B_{x}}{\partial t}
$$

For our plan wave solution this nequiremat is

$$
\frac{2}{2 y}(\underbrace{E_{0 z} e^{i(k z-\omega t)}}_{\substack{\text { no y-dependume }}})-\frac{2}{2 z}\left(E_{0 y} e^{i(k z-\omega t)}\right)=\frac{-2}{2 t}\left(B_{0 x} e^{i(k z-\cot )},\right.
$$

$$
\begin{aligned}
& -i k E_{0 y}=i \omega B_{0 x} \\
& -k E_{0 y}=\omega B_{0 x}
\end{aligned}
$$

Similarly, the $y$-component of faraday's Law require) that

$$
K E_{0 x}=w B_{o y}
$$

And we already know that $B_{0 z}=E_{0 . z}=\phi$
We can wrote all three of these equation on one line using a cross product:

$$
\vec{B}_{0}=\frac{k}{\omega}\left(\hat{z} \times \vec{E}_{0}\right)
$$

On, since $\frac{k}{\omega}=\frac{1}{v_{\text {phase }}}=\frac{1}{e}$,

$$
\vec{B}_{0}=\frac{1}{e}\left(\hat{z} \times \vec{E}_{0}\right)
$$

or $\hat{z} \times \vec{E}_{0}=\overrightarrow{B_{0}}$

This equation says that

- $\overrightarrow{B o}_{0}$ is perpendicular to $\hat{z}$ (dinetfon of travel)
- $\vec{E}_{\partial}$ is perpendicular to $\vec{B}_{d}$
- $\vec{E}_{0}$ is perpendicular to $\hat{z}$ (direction of travel)

Also $\vec{E}$ and $\vec{b}$. are related in their magnitudes by

$$
E_{0}=c B_{\delta}
$$

And they are in phase $\Rightarrow$ when $\vec{E}$ is maximal, $\vec{B}$ is also maximal at that sam en location in space

Using the relationship between $\vec{E}$ \& $\vec{B}$ we can write ow plane wave solution as

$$
\begin{aligned}
& \left.\vec{E}(z,+)=\left|\vec{E}_{0}\right| e^{i(k z-\omega t)} \hat{x}\right) \text { choose } x \text {-direction } \\
& \vec{B}(z, t)=\frac{1}{c}\left|\vec{E}_{0}\right| e^{i(k z-\omega t)} \hat{y} \text { as the } \vec{E} \text { field } \\
& \text { direction. }
\end{aligned}
$$

These equations correctly describe that

1) $\vec{E}$ is 1 to direction of travel
2) $\vec{B}$ is $L$ to direction of travel
3) $\vec{E}$ is 1 to $\vec{B}$
4) $\vec{B}$ has magnitude $\left|\frac{\vec{E}}{C}\right|$
5) $\vec{E} \& \vec{B}$ are in phase with each other.

Question What if the direction of travel is not the $\hat{z}$ direction?

Answer We need to generalize The " $k z$ " part of the phase to 3 dimension. First define a $\vec{K}$ vector:
$\vec{K}$ : points in The direction of travel and $|\vec{k}|=K=$ wavenumber for the plane wave.

Also: Let $\vec{r}$ be an arbitrary position vector.

Now imagine a plane of constant phase which is perpendicular to the direction of trave 1:


The projection of $\vec{r}$ onto $\vec{k}$ will be constant everywhere in this plane. So
$\vec{k}=\vec{r}$ is the 3-dinensiones generalization of $k z$.

So we can write our plane wave solution as

$$
\vec{E}(\vec{r}, t)=\left|\vec{E}_{0}\right| \hat{n} e^{i(\vec{k} \cdot \vec{r}-\omega t)}
$$

$\mathcal{L} \hat{n}$ is a unit vector perpindicular to $\vec{k}$.

$$
\vec{B}(\vec{r}, t)=\frac{1}{c}\left(\vec{E}_{0}\right)(\underbrace{\hat{k} \times \hat{n}}) e^{i(\vec{k} \cdot \vec{r}-\omega t)}
$$

$\hat{k} \times \hat{n}$ is perpindicula to both $\vec{k}$ and $\hat{n}$.

Poynting Vector

Recall the energy density due to $\vec{E}$ :

$$
u_{E}=\frac{1}{2} \varepsilon_{0}|\vec{E}|^{2}=\text { energy density of space du }
$$ to $\vec{E}$.

and Recall

$$
U_{B}=\frac{1}{2} \frac{1}{\mu_{0}}|\vec{B}|^{2}=\text { enesy density at space due }
$$ to $\vec{B}$.

For our monochromatic plane wave we have

$$
|\vec{B}|^{2}=\frac{1}{c^{2}}|\vec{E}|^{2}=\mu_{0} \varepsilon_{0}|\vec{E}|^{2}
$$

So the

$$
\begin{aligned}
u_{B}=\frac{1}{2} \frac{1}{\mu_{0}}|\vec{B}|^{2} & =\frac{1}{2} \frac{1}{\mu_{0}}\left(\mu_{0} \varepsilon_{0}|\vec{E}|^{2}\right) \\
u_{B} & =\frac{1}{2} \varepsilon_{0}|\vec{E}|^{2}=u_{E}!!
\end{aligned}
$$

So the energy density due to $\vec{E}$ is identical to That due to $\vec{B}$, (for a plan wave.).
The total enesy density is

$$
u=u_{E}+u_{B}=\frac{1}{2} \varepsilon_{0}|\vec{E}|^{2}+\left.\frac{1}{2} \varepsilon_{0} \vec{E}\right|^{2}=\varepsilon_{0}|\vec{E}|^{2}
$$

$$
u=\varepsilon_{0}|\vec{E}|^{2}=\varepsilon_{0}\left|\vec{E}_{0}\right|^{2} \cos ^{2}(k z-\omega t)
$$

$\uparrow$ for a wave travelling in the $z$-direction.
Now Define the "Poxnting Vector":

$$
\vec{S} \equiv \frac{1}{\mu_{0}} \vec{E} \times \vec{B}
$$

For ow plane wave solution, the Poynting Vector is

$$
\vec{S}=\frac{1}{\mu_{0}}\left(\left|\vec{E}_{0}\right| \frac{\left|\vec{E}_{0}\right|}{c}\right) \cos ^{2}(k z-\omega t) \hat{z}
$$

$$
\text { Also: } \frac{l}{\mu_{0} c}=\frac{\varepsilon_{0}}{\underbrace{\left.\mu_{0} \varepsilon_{0}\right) c}_{\uparrow \frac{1}{c^{2}}}}=\frac{\varepsilon_{0} c^{2}}{c}=\varepsilon_{0} c
$$

So $\quad \vec{s}=c \varepsilon_{0}\left(\left.\vec{E}_{0}\right|^{2} \cos ^{2}(k z-\omega t) \hat{z}\right.$ energy demist, $u$

$$
\vec{s}=c u \hat{z}
$$

So $\vec{s}$ has units of energy demity times velocity,

In other words,
$\vec{s}$ is the energy per unit area transported by the wave.
Also, sine $\vec{S}=\frac{1}{\mu_{0}} \vec{E} \times \vec{B}, \quad \vec{s}$ also points in the direction of travel.

If we take the time average of $\vec{S}$, we get

$$
\text { is } \frac{1}{2} \text {. }
$$

$$
\langle\vec{s}\rangle=I=\frac{1}{2} c q_{0}\left|\vec{E}_{0}\right|^{2}
$$

Dielectrics: EM waves in matter.
In a linear dielectric material, the atores become electrically and magnetically polarized by the applied $\vec{E}$ and $\vec{B}$ fields.

We can accomodate this in Maxwells Equation simply by replacing $M_{0} \rightarrow \mu$
and $\varepsilon_{0} \rightarrow \varepsilon$
in Ampere) Law. So we have
$\nabla \cdot \vec{E}=\phi \leftarrow$ no free charges
$\nabla \cdot \vec{B}=\varnothing$
$\nabla \measuredangle \vec{E}=-\frac{2 \vec{B}}{\partial t}$
$\nabla \times \vec{B}=\mu \varepsilon \frac{\partial E}{\partial t} \leftarrow$ no Free charles currents
Then inside this dielectric material EM waves will be allowed. The modified wave equation will be

$$
\nabla^{2} \vec{E}=\mu a \frac{\partial^{2 \vec{E}}}{\partial t^{2}}
$$

So we can identify the phase velocity as

$$
V_{p}=\frac{1}{\sqrt{M \varepsilon}}
$$

We define the index of refraction to be $n \equiv \frac{c \longleftarrow \text { speed of light in vacuum }}{V_{p}} \longleftarrow$ speed of light in the materiel

So $n=\sqrt{\frac{\varepsilon \mu}{\varepsilon_{0} \mu_{0}}}$
Usually $\mu \approx \mu_{0}$ ) so $n \approx \sqrt{\frac{\varepsilon}{\varepsilon_{0}}}>1$
The Poynting Vector in the material will be

$$
\vec{S}=\frac{1}{\mu} \vec{E} \times \vec{B}
$$

Reflection \& Transmission at a Dielectric Boundary

Dielectric 1,

$$
\text { velocity }=v_{1}
$$


reflected



Incident: $\vec{E}_{I}=\left|\vec{E}_{0 I}\right| e^{i\left(k_{1} z-\omega t\right)} \hat{x}$

$$
\vec{B}_{I}=\frac{1}{v_{1}}\left|\vec{E}_{0 I}\right| e^{i\left(k_{1} z-\omega t\right)} \hat{y}
$$

Rolected: $\vec{E}_{R}=\left|\vec{E}_{O R}\right| e^{i\left(-k_{1} z-\omega t\right)} \hat{x}$

$$
\vec{B}_{R}=-\frac{1}{V_{1}}\left|\stackrel{\rightharpoonup}{E}_{0 R}\right| e^{i\left(-k_{1} z-\omega t\right)} \hat{y}
$$

Transmitted: $\vec{E}_{T}=\left|\vec{E}_{o T}\right| e^{i\left(k_{2} z-\omega t\right)} \hat{x}$

$$
\vec{B}_{T}=\frac{1}{v_{2}}\left|\vec{E}_{o r}\right| e^{i\left(k_{2} z-\omega t\right)} \hat{y}
$$

Boundary Conditions
(1) $\vec{E}$ should be continuous across the bound an.

$$
\begin{equation*}
E_{O I}+E_{O R}=E_{O T} \tag{1}
\end{equation*}
$$

(2) $\frac{\vec{B}}{\mu}$ should be continuous across the boundary

$$
\begin{equation*}
\frac{1}{\mu_{1}}\left(\frac{1}{v_{1}} E_{0 I}-\frac{1}{v_{1}} E_{O R}\right)=\frac{1}{\mu_{2}} \frac{1}{v_{2}} E_{O T} \tag{2}
\end{equation*}
$$

or

$$
\begin{equation*}
E_{O I}-E_{O R}=\frac{\mu_{1} V_{1}}{\mu_{2} v_{2}} E_{O T} \tag{2}
\end{equation*}
$$

Solve (1) and (2) simultaniestyly. We did this before for waves on a string, and this is very similar.

Result:

$$
E_{0 R}=\left(\frac{\mu_{2} v_{2}-\mu_{1} v_{1}}{\mu_{2} v_{2}+\mu_{1} v_{1}}\right) E_{O I}
$$

and $E_{O T}=\left(\frac{2 \mu_{2} V_{2}}{\mu_{2} V_{2}+\mu_{1} V_{l}}\right) E_{0 I}$
We can make this look exactly like transmission and reflection of waves on a string by defining the impedance for EM waves as

$$
z \equiv \mu v=\mu\left(\frac{1}{\sqrt{\mu \varepsilon}}\right)=\sqrt{\frac{\mu}{q}}
$$

Then

$$
\begin{aligned}
& \text { Then } E_{0 R}=\left(\frac{z_{2}-Z_{1}}{Z_{1}+Z_{2}}\right) E_{0 I} \\
& \text { and } E_{0 T}=\left(\frac{2 Z_{2}}{Z_{1}+Z_{2}}\right) E_{0 I} \\
& \text { Under this definition of } Z_{\text {, }} \text { we can calculate } \\
& \text { The impedance of free space: } \\
& Z_{\text {free space }}=\sqrt{\frac{\mu_{0}}{\varepsilon_{0}}}=376.7 \Omega
\end{aligned}
$$

We can find a simple expression to describe the intensity of the reflected beam in terms of the indices of refraction: For molt simple dielectrics, $\mu \approx \mu_{0}$, so that

$$
\left.\begin{array}{rl}
E_{O R} & =\left(\frac{\mu_{2} v_{2}-\mu_{1} v_{1}}{\mu_{2} v_{2}+\mu_{1} v_{1}}\right) E_{0 I} \\
& \approx\left(\frac{v_{2}-v_{1}}{v_{2}+v_{1}}\right) E_{O I} \\
& =\left(\frac{c}{n_{2}}-\frac{c}{n_{1}}\right) E_{0 I} \\
& \left.=\begin{array}{r}
\text { Multiply top } \\
\text { and bottom } \\
n_{2}
\end{array}\right) \text { by } n_{1} n_{2}
\end{array}\right)
$$

The Intensity is the square of $E$, so

$$
I_{\text {reflected }}=\left(\frac{n_{1}-n_{2}}{n_{1}+n_{2}}\right)^{2} I_{\text {incident. }}
$$

