Physics 273 - Homework \#6

1) Let's consider a continuous string with the triangular initial shape. Remember, the string is mounted between two fixed wall at $\mathrm{x}=0$ and $\mathrm{x}=\mathrm{L}$, and its equation of motion is the wave equation:

$$
\frac{\partial^{2} y}{\partial t^{2}}=\frac{T}{\rho} \frac{\partial^{2} y}{\partial x^{2}}
$$

and the general solution is

$$
y(x, t)=\sum_{n=1}^{\infty} C_{n} \sin \left(\frac{n \pi x}{L}\right) e^{i \omega_{n} t}, \text { where } \omega_{n}=\sqrt{\frac{T}{\rho}} \frac{n \pi}{L},
$$

and the $\left\{\mathrm{C}_{\mathrm{n}}\right\}$ are some set of coefficients which are determined by the initial conditions. In class we will calculate (on Tuesday March 12) the real and imaginary parts of the $\left\{\mathrm{C}_{\mathrm{n}}\right\}$ for the case where the string has a triangular shape with height $=(h)$ at $t=0$:

$$
y(x, t=0)=\left\{\begin{array}{cl}
\frac{2 h x}{L} & 0 \leq x \leq L / 2 \\
\frac{2 h(L-x)}{L} & L / 2 \leq x \leq L
\end{array}\right.
$$

and zero initial velocity:

$$
\dot{y}(x, t=0)=0 .
$$

The result is

$$
\begin{gathered}
\left.\operatorname{Re}\left(C_{n}\right) \equiv a_{n}=\frac{8 h}{n^{2} \pi^{2}}(-1)^{(n-1) / 2} \text { for odd }(\mathrm{n}) \text { and } \mathrm{a}_{\mathrm{n}}=0 \text { for even (} \mathrm{n}\right), \text { and } \\
\operatorname{Im}\left(C_{n}\right) \equiv b_{n}=0 \text { for all (n). }
\end{gathered}
$$

Please turn in a plot for each of the following questions:
a) First consider the solution at $\mathrm{t}=0$. Let the initial height of the triangle be $\mathrm{h}=0.5$ meters, and the length of the string be 10 meters. Use a computer to draw the solution, but only including the first non-zero term of the infinite sum (just the first normal mode).
b) Continuing to look at the $\mathrm{t}=0$ solution, draw the solution including just the first two non-zero terms in the infinite sum.
c) Continue as in parts (a) and (b), but now including the first three non-zero terms (Optional: if it's not too much trouble, keep the first 100 non-zero terms).
d) Now keep the first three (or 100) non-zero terms, as in part (c), but this time we will allow the solution to evolve in time. Let the tension in the string be 10 N and the mass density be 0.1 $\mathrm{kg} /$ meter. Draw the shape of the rope at $\mathrm{t}=0.1$ seconds, keeping just the first three (or 100) terms in the sum.
e) Continue as in part (e), but now draw the shape at $\mathrm{t}=0.2$ seconds.
f) Continue as in parts (e) and (f), but now draw the shape at $\mathrm{t}=0.3$ seconds.
2) Ortho-normality of Sine functions. The Kronecker Delta (δ_{nm}) is defined to be equal to 0 for $\mathrm{n} \neq \mathrm{m}$, and equal to 1 for $\mathrm{n}=\mathrm{m}$. Given this definition, show that

$$
\frac{2}{L} \int_{0}^{L} \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{m \pi x}{L}\right) d x=\delta_{n m}
$$

where (n) and (m) are integers. Explicitly evaluating the integral for
a) the $\mathrm{n}=\mathrm{m}$ case.
b) the $\mathrm{n} \neq \mathrm{m}$ case.

Hint: You may use this trigonometric identity: $\sin (u) \sin (v)=\frac{1}{2}[\cos (u-v)-\cos (u+v)]$.
3) The classical wave equation and its general solutions are given in problem \#1. Show that the general solution is correct by explicitly substituting it into the equation of motion.
4) Consider the set of functions $\left\{\mathrm{e}^{\mathrm{i} \mathrm{in}_{8} \times / L}\right\}$, where (n) is any positive or negative integer. Show that these functions are orthogonal to each other over the interval ($-\mathrm{L}, \mathrm{L}$) by evaluating this integral:

$$
\int_{-L}^{L}\left(e^{i n \pi x / L}\right)\left(e^{-i m \pi x / L}\right) d x
$$

Evaluate the integral for the case where $\mathrm{n}=\mathrm{m}$ and the case where $\mathrm{n} \neq \mathrm{m}$.

